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LINK PREDICTION

* Numerous applications:

» Recommender systems (Facebook, Spotify, Amazon,..)
» Dynamic networks
» Incomplete datasets




HEURIS TICS

* Historically, link prediction 1s done using heuristics

* Example of heuristics:

» The more neighbors in common between nodes, the highest chance of having
an edge (CN)

» The highest the degree of nodes, the highest the chance of having an edge (PA)
» Many others (including more complex ones)



SUPERVISED LEARNING

* Heuristics give better results when combined using supervised
learning (classifier)

Classifier
BN PA | AA | ... | Label Edge |Prediction
AR 0 (034 ... | Y (nl,n2) S diee
e 1054 088 ... | N (RlSmEy 0.5

(h2,n3) 088 0.1 055 ... N (n2n3) 02



SUPERVISED LEARNING

* Heuristics give better results when combined using supervisead
learning (classifier)

Training Prediction (testing)



USING EMBEDDINGS

* Embeddings provide a vector by node

* Generating one vector by edge:

» Combine vectors of extremities
» No theoretical arguments on how to combine

» Best combine function decided empirically (best results)
- Usually: Hadamar product



SUPERVISED LEARNING

Classifier
B D) | D5 | ... | Label Edge |Prediction
s 0 034 ... Y (Nl n2) e dies
e 1054 088 ... | N (RlSmEy 0.5

(h2,n3) 088 0.1 055 ... N (n2n3) 02



UNSUPERVISED LEARNING

* Embedding could also be used with unsupervised |earning

* Distance between vectors In the embedding Is related to
the probability of having an edge between nodes

« =>[he Inverse of the distance between nodes In the
embedding Is the prediction



OUR QUESTION

* Previous articles have mostly focused on comparing graph
embedding techniques between them

» Can we say that graph embeddings are (unambiguously)

outperforming heuristics !

» | yes, by how much ?
» If no, why and how to improve it ?



BES TIING SET TS

« Methods (we should add more !)

» Node2vec
» VERSE

| [~

S GOPE

5 Graphs (we should add more )

» Facebook
» AstropPH
» VK
Gt

Heuristics Definition
Common Neighbors IT(u) N T'(v)|
. 1

Adamlc Adar Wer(uz)mr(v) W

Preferential attachment IT(u) + I'(v)|

Jaccard Coefficient I?EZ%B?E?%I

Resource allocation index > T

wel(W)NT(v) ="

Name V| | |E| Density
FACEBOOK [12] | 4k | 88k | 0.0055
ASTROPH [11] | 18k | 198k | 0.00061
VK [19] 79k | 2.7M | 0.00043




EVALUATION MEASURES

* Difficult choice. Link prediction has high imbalance

between classes (density of real graphs is very low)

» =>ROC score Is Independent from class distribution
» =>AP Is not but some authors prefer it (weights to the first few prediction)
» =>Precision@k Is not a single score, but easy to Interpret.

@ aeosen ones:

» Average Precision (AP) (with a realistic unbalance)
R @G
» Precision@k



SUPERVISED OR
UNSUPERVISED ¢
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\/\/I—HCI—I APPROACI—I \S BEST ?

(a) FACEBOOK (b) ASTROPH

ROIC S@alre
=>0Only one embedding outperforms heuristics (VERSE)



WHICH APPROACH IS BEST ¢
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WHICH APPROACH IS BEST ¢
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WHY ¢

* Why embeddings do not outperform heuristics ¢/

» (While they are much more advanced)

» (And most published works seem to show the contrary)

Heuristics | Embeddings
AP 0.13378 0.02298
ROC | 0.813 0.618
(a) Distance 2
Heuristics | Embeddings
AP 0.00219 0.00338
ROC | 0.705 0.794

(b) Distance > 2
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fraction@k (Hubs)
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BIASES

* Possible explanation (positive for embeddings):
» => Embeddings try to predict “realistic’” edges

» => Heuristics focus only on the “simple’ cases, the ones humans think should
appear

» => Heuristics results are more biased, which can be a problem
» Social networks: recommend only people the most similar to you

» Product/music recommendation: recommend only the most similar to your
previous purchases
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Comments and questions welcomed



