

UNIVERSIT DE LYON

LIRIS

LINK PREDICTION USING GRAPH EMBEDDING

Aakash Sinha, Rémy Cazabet

LINK PREDICTION

Time T+I

TimeT

LINK PREDICTION

- Numerous applications:
 - Recommender systems (Facebook, Spotify, Amazon,..)
 - Dynamic networks
 - Incomplete datasets
 - ► ...

HEURISTICS

- Historically, link prediction is done using heuristics
- Example of heuristics:
 - The more neighbors in common between nodes, the highest chance of having an edge (CN)
 - The highest the degree of nodes, the highest the chance of having an edge (PA)
 - Many others (including more complex ones)

SUPERVISED LEARNING

 Heuristics give better results when combined using supervised learning (classifier)

Edge	CN	PA	AA	 Label	Edge	Prediction
(n1,n2)	0.3	0.2	0.34	 Y	(n1,n2)	0.88
(n1,n3)	0.1	0.34	0.88	 Ν	(n1,n3)	0.5
(n2,n3)	0.88	0.1	0.55	 Ν	(n2,n3)	0.2

Classifier

SUPERVISED LEARNING

 Heuristics give better results when combined using supervised learning (classifier)

USING EMBEDDINGS

• Embeddings provide a vector by node

Generating one vector by edge:

- Combine vectors of extremities
- No theoretical arguments on how to combine
- Best combine function decided empirically (best results)
 - Usually: Hadamar product

SUPERVISED LEARNING

Classifier

Edge	DI	D2	D3	 Label	Edge	Prediction
(n1,n2)	0.3	0.2	0.34	 Y	(n1,n2)	0.88
(n1,n3)	0.1	0.34	0.88	 Ν	(n1,n3)	0.5
(n2,n3)	0.88	0.1	0.55	 Ν	(n2,n3)	0.2

UNSUPERVISED LEARNING

- Embedding could also be used with unsupervised learning
- Distance between vectors in the embedding is **related to** the probability of having an edge between nodes
- =>The inverse of the distance between nodes in the embedding is the prediction

OUR QUESTION

- Previous articles have mostly focused on comparing graph embedding techniques between them
- Can we say that graph embeddings are (unambiguously) outperforming heuristics ?
 - If yes, by how much ?
 - If no, why and how to improve it ?

TESTING SET UP

- Methods (we should add more !)
 - Node2vec
 - VERSE
 - ► LE
 - HOPE
- Graphs (we should add more !)
 - Facebook
 - AstropPH
 - ► VK
 - CoCit

Heuristics	Definition
Common Neighbors	$ \Gamma(u) \cap \Gamma(v) $
Adamic Adar	$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{\log \Gamma(w) }$
Preferential attachment	$ \Gamma(u) * \Gamma(v) $
Jaccard Coefficient	$\frac{ \Gamma(u) \cap \Gamma(v) }{ \Gamma(u) \cup \Gamma(v) }$
Resource allocation index	$\sum_{w \in \Gamma(u) \cap \Gamma(v)} \frac{1}{ \Gamma(w) }$

Name	V	E	Density
FACEBOOK [12]	4k	88k	0.0055
ASTROPH [11]	18k	198k	0.00061
VK [19]	79k	2.7M	0.00043

EVALUATION MEASURES

- Difficult choice. Link prediction has **high imbalance** between classes (density of real graphs is very low)
 - >=>ROC score is independent from class distribution
 - =>AP is not but some authors prefer it (weights to the first few prediction)
 - >Precision@k is not a single score, but easy to interpret.
- Chosen ones:
 - Average Precision (AP) (with a realistic unbalance)
 - ROC
 - Precision@k

SUPERVISED OR UNSUPERVISED ?

=> Supervised is usually more efficient than unsupervised (but not always that much)

WHICH APPROACH IS BEST ?

(a) FACEBOOK (b) ASTROPH ROC Score

=>Only one embedding outperforms heuristics (VERSE)

WHICH APPROACH IS BEST ?

Average Precision (with a realistic => No embedding outperform heuristics

WHICH APPROACH IS BEST ?

FACEBOOK ASTROPH

Precision @k =>No embedding outperform heuristics

WHY ?

- Why embeddings do not outperform heuristics ???
 - (While they are much more advanced)
 - (And most published works seem to show the contrary)

	Heuristics	Embeddings			
AP	0.13378	0.02298			
ROC	0.813	0.618			
(a) Distance 2					
		[Freehadding ma			
	Heuristics	Embeddings			
AP	0.00219	0.00338			
AP ROC	Heuristics 0.00219 0.705	0.00338 0.794			

BIASES

FACEBOOK ASTROPH

Fraction@k of predictions at distance 2 =>Heuristics favor more the "easy" cases

BIASES

FACEBOOK ASTROPH

Fraction@k of predictions including Hubs

BIASES

- Possible explanation (positive for embeddings):
 - => Embeddings try to predict ''realistic'' edges

. . .

- => Heuristics focus only on the "simple" cases, the ones humans think should appear
- => Heuristics results are more biased, which can be a problem
- Social networks: recommend only people the most similar to you
- Product/music recommendation: recommend only the most similar to your previous purchases

THANKYOU FORYOUR ATTENTION

Comments and questions welcomed