Similarities and Representations of Graphs

Anton Tsitsulin

Hasso Plattner Institute \rightarrow University of Bonn

Different domains:

- Information
- Social
- Biological
- Transportation
- .

Different graph types:

- (Un)directed
- (Un)weighted
- Temporal
- Heterogeneous
- .

Different modalities:

- Nodes
- Edges
- Motifs
- Subgraphs
- Whole graphs
- ..

Different tasks:

- Classification
- Clustering
- Anomaly detection

Domains	Graph Types	Modalities	Tasks		
Information	(Un)directed	Nodes	Classification		
Social	(Un)weighted	Edges	Clustering		
Biological	Temporal	Subgraphs	Anomaly		
Transportation	Heterogeneous	Whole graphs	detection		

Domains	Graph Types	Modalities	Tasks
Information Social Biological Transportation	(Un)directed (Un)weighted Temporal Heterogeneous	Nodes Edges Subgraphs Whole graphs	Classification Clustering Anomaly detection ↓ Embeddings

We have fast & good algorithms for mining vector data...

low-dimensional representation

Why representations?

We have fast & good algorithms for mining vector data...

low-dimensional representation

Why representations?

What makes a Representation?

Good representation preserves geometry of the original space.

What makes a Representation?

Good representation preserves geometry of the original space.

What makes a Representation?

Good representation preserves geometry of the original space.

Part I: node representations

VERSE: **Vers**atile Graph **E**mbeddings from Similarity Measures

Anton Tsitsulin¹ Davide Mottin¹ Panagiotis Karras² Emmanuel Müller¹

Neural node representations

Nodes in random walks \approx words in sentences \rightarrow word2vec

[1] Efficient Estimation of Word Representations in Vector Space, Mikolov et al., NIPS 2013
[2] DeepWalk: Online Learning of Social Representations, Perozzi et al., KDD 2014
[3] node2vec: Scalable Feature Learning for Networks, Grover & Leskovec, KDD 2016

Wait, what?

Do we know what do these walks mean?

- What do parameters change?
- What does the model optimize?

[1] Metric recovery from directed unweighted graphs, Hashimoto et al., AISTATS 2015[2] Neural Word Embedding as Implicit Matrix Factorization , Levy & Goldberg, NIPS 2014

Wait, what?

Do we know what do these walks mean?

- What do parameters change?
- What does the model optimize?

Yes, but the assumptions are too strict!

(dimensionality = number of nodes)

[1] Metric recovery from directed unweighted graphs, Hashimoto et al., AISTATS 2015[2] Neural Word Embedding as Implicit Matrix Factorization , Levy & Goldberg, NIPS 2014

Key observation

Random walks define node similarity distributions!

Key observation

Random walks define node similarity distributions!

Q: Can we inject similarities fully into the model?

Yes, we can!

VERSE can learn similarity <u>distributions</u>

Q1: Which similarities can we possibly represent? Q2: What other methods have to do with similarities?

Why similarities?

• We can explicitly measure the quality

Why similarities?

- We can measure the quality
- We can <u>adapt the similarity</u> to the data/task
 - Examples in the paper: PageRank, SimRank, adjacency

Why similarities?

- We can measure the quality
- We can adapt the similarity to the data/task
 - Examples in the paper: PageRank, SimRank, adjacency
- Thinking about similarities provides <u>insight</u>:
 - We show how DeepWalk & node2vec ≈ PPR
 - VERSE uses 1 parameter instead of 5

VERSE graph embedding

Algorithm for given $sim(u, \cdot)$:

- Initialize $W \sim \mathcal{N}(0, 1)$
- For $u \in V$ optimize W for softmax $sim(u, \cdot)$ by gradient descent

Full updates are too expensive - $O(n^2)$

We make it faster via sampling!

Sampling in VERSE

We use Noise Contrastive Estimation

$$\mathcal{L}_{NCE} = \sum_{u \sim \mathcal{P}} \left[\log \Pr(D = 1 | sim_{\mathrm{E}}(u, v)) + v \sim sim_{\mathrm{G}}(u, \cdot) \right]$$
$$k \mathbb{E}_{\widetilde{v} \sim Q(u)} \log \Pr(D = 0 | sim_{\mathrm{E}}(u, \widetilde{v})) \right]$$

Negative Sampling does not preserve similarities!

Experimental setup

- Goal: diverse tasks & datasets
- PPR as default similarity
- Max. one day on 10-core server (try that at home!)
- Code @ GitHub, C for performance (don't try that at home!)

Social graph x link prediction

method	Average	Concat	Hadamard	L1	L2	
VERSE	73.78	73.66	79.71	74.11	74.56	
DeepWalk	70.05	69.92	69.79	<u>78.38</u>	77.37	
LINE	75.17	75.13	72.54	63.77	64.47	
HOPE	71.89	71.90	70.22	71.22	70.63	
HSVERSE	74.14	74.02	80.26	73.04	73.53	
Node2vec	71.29	71.22	72.43	78.38	<u>78.66</u>	
Feature Eng. 78.84						
Link prediction						
(accuracy)						

edge representation

Different graphs × node clustering

method	CoCit	CoAuthor	VK	YouTube	Orkut
VERSE	69.43	79.25	45.78	67.63	42.64
DeepWalk	70.04	73.83	43.30	58.08	44.66
LINE	60.02	71.58	39.65	63.40	42.59
GraRep	67.61	77.40			
HOPE	42.45	69.57	21.70	37.94	
HSVERSE	69.81	79.31	45.84	69.13	
Node2vec	70.06	75.78	44.27		
Louvain	72.05	84.29	46.60	71.06	

Node clustering

(modularity)

Web graph x node classification

method	1%	3%	5%	7%	9%
VERSE	17.92	22.26	24.07	25.07	25.99
DeepWalk	18.16	21.55	22.89	23.64	24.54
LINE	13.71	17.36	18.69	19.84	20.64
HOPE	9.22	13.80	15.09	16.18	16.78
HSVERSE	18.16	22.84	25.40	27.38	29.09

labelled nodes %

Classification (accuracy)

Take home messages

- We provide new useful <u>abstraction</u>: node similarities
- We create **VERSE** to <u>explicitly</u> work with similarities
- We develop a scalable approximation technique with NCE
- There is a room for improvement!

Part II: graph representations

NetLSD: Hearing the Shape of a Graph

Anton Tsitsulin¹ Davide Mottin¹ Panagiotis Karras² Alex Bronstein³ Emmanuel Müller¹

Defining graph similarity

With it, we can do:

- Classification
- Clustering
- Anomaly detection

• ..

Scalability is key!

Two problem sources:

- Big graphs
- Many graphs

Solution: graph descriptors

$\mathsf{Isomorphism} \Rightarrow d(G_1, G_2) = 0$

- Permutation invariance
- Scale-adaptivity
- Size invariance

Local structures are important

- Permutation invariance
- Scale-adaptivity
- Size invariance

Global structure is important

- Permutation invariance
- Scale-adaptivity
- Size invariance

We may need to disregard the size

- Permutation invariance
- Scale-adaptivity
- Size invariance

Network Laplacian Spectral Descriptors

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance
- + Scalability

= NetLSD

Geometry for probability measures supported on a space.

Geometry for probability measures supported on a space.

G. Monge 1781 L. Kantorovich 1939

Geometry for probability measures supported on a space.

G. Monge

1781

L. Kantorovich

1939

C. Villani 2003

Geometry for probability measures supported on a space.

G. Monge

1781

L. Kantorovich

1939

ν

Geometry for probability measures supported on a space.

G. Monge 1781

L. Kantorovich 1939

Geometry for probability measures supported on a space.

G. Monge 1781 L. Kantorovich 1939

Discrete case \rightarrow Linear programming ν

$$d_{\mathcal{GW},p}(X,Y) = \frac{1}{2} \left(\inf_{M} \sum_{i,j} \sum_{i',j'} \left| d(x_i, x_{i'}) - \bar{d}(y_j, y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p}$$

Heat diffusion has an explicit notion of scale

$$\frac{\partial u_t}{\partial t} = -\mathcal{L}u_t$$

Heat kernel has an explicit notion of scale

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top$$

Scale corresponds to locality

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top$$

t = 0.0100

t = 10.0000

Scale corresponds to locality

$$H_t = e^{-t\mathcal{L}} = \Phi e^{-t\Lambda} \Phi^\top = \sum_{j=1}^n e^{-t\lambda_j} \phi_j \ \phi_j^\top$$

t = 0.0100

t = 10.0000

Spectral Gromov-Wasserstein = Gromov-Wasserstein + heat kernel

$$d_{\mathcal{GW},p}^{\text{spec}}(X,Y) = \inf_{M} \sup_{t>0} e^{-2(t+t^{-1})} \cdot \left(\sum_{i,j} \sum_{i',j'} \left| H_t^X(x_i,x_{i'}) - H_t^Y(y_j,y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p}$$

t = 1.0000

Using heat kernel at all *t* as a distance doesn't make our task any easier

Spectral Gromov-Wasserstein has a useful lower bound!

$$d_{\mathcal{GW},p}^{\text{spec}}(X,Y) = \inf_{M} \sup_{t>0} e^{-2(t+t^{-1})} \cdot \left(\sum_{i,j} \sum_{i',j'} \left| H_t^X(x_i,x_{i'}) - H_t^Y(y_j,y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p} \ge \sup_{t>0} e^{-2(t+t^{-1})} \cdot |\operatorname{tr}(H^X) - \operatorname{tr}(H^Y)|$$

Using heat kernel at all *t* as a distance **does** make our task **way** easier!

Spectral Gromov-Wasserstein has a useful lower bound!

$$d_{\mathcal{GW},p}^{\text{spec}}(X,Y) = \inf_{M} \sup_{t>0} e^{-2(t+t^{-1})} \cdot \left(\sum_{i,j} \sum_{i',j'} \left| H_t^X(x_i,x_{i'}) - H_t^Y(y_j,y_{j'}) \right|^p m_{ij} m_{i'j'} \right)^{1/p} \ge \sup_{t>0} e^{-2(t+t^{-1})} \cdot |\operatorname{tr}(H^X) - \operatorname{tr}(H^Y)|$$

Using heat kernel at all *t* as a distance **does** make our task **way** easier!

We can just compare heat traces!

Network Laplacian Spectral Descriptors

$$h_t = \operatorname{tr}(H_t) = \sum_j e^{-t\lambda_j}$$

We sample t logarithmically, and compare h_t with L_2 distance However, h_t is size-dependent!

Size invariance = normalization

$$h_t = \operatorname{tr}(H_t) = \sum_j e^{-t\lambda_j}$$

We can normalize by h_t of the complete (K) or empty graph \overline{K} Computation of all λ is still expensive: $O(n^3)$

Scalability

We propose two options:

1. Use local Taylor expansion:
$$h_t = \operatorname{tr}(e^{-t\mathcal{L}}) = \sum_{k=0}^{\infty} \frac{\operatorname{tr}((-t\mathcal{L})^k)}{k!} \approx n - t \operatorname{tr}(\mathcal{L}) + \frac{t^2}{2} \operatorname{tr}(\mathcal{L}^2) + \dots$$

Second term is degree distribution; third is weighted triangle count

Scalability

We propose two options:

1. Use local Taylor expansion: $h_t = \operatorname{tr}(e^{-t\mathcal{L}}) = \sum_{k=0}^{\infty} \frac{\operatorname{tr}((-t\mathcal{L})^k)}{k!} \approx n - t \operatorname{tr}(\mathcal{L}) + \frac{t^2}{2} \operatorname{tr}(\mathcal{L}^2) + \dots$

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest Linear extrapolation = explicit assumption on the manifold (Weyl's law)

Scalability

We propose two options:

1. Use local Taylor expansion: $h_t = \operatorname{tr}(e^{-t\mathcal{L}}) = \sum_{k=0}^{\infty} \frac{\operatorname{tr}((-t\mathcal{L})^k)}{k!} \approx n - t \operatorname{tr}(\mathcal{L}) + \frac{t^2}{2} \operatorname{tr}(\mathcal{L}^2) + \dots$

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest Linear extrapolation = explicit assumption on the manifold (Weyl's law)

Other spectrum approximators can be even more efficient!

[Cohen-Steiner et al. | KDD 2018]

[Adams et al. | arXiv 1802.03451]

Experimental design

- Permutation invariance
- Scale-adaptivity
- Size invariance

Detecting graphs with communities

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance

		$n \sim \mathcal{P}(\lambda)$					
	Method	64	128	256	512	1024	
NetLSD	$ \begin{array}{c} h(G) \\ h(G)/h(\bar{K}) \end{array} $	$54.39 \\ 54.53$	$59.01 \\ 62.27$		$57.99 \\ 76.45$	$53.80 \\ 78.40$	
	$w(G) \ w(G)/w(ar{K})$	$56.23 \\ 55.51$	$63.77 \\ 63.85$	$69.57 \\ 72.12$	$71.66 \\ 77.59$	70.34 79.39	
NIPS'17 ASONAM'13	FGSD NetSimile	$\begin{array}{c} 55.44 \\ 59.55 \end{array}$	$54.99 \\ 56.57$	$53.86 \\ 59.41$	$52.74 \\ 66.23$	$50.92 \\ 60.58$	

Accuracy of classification of SBM vs Erdős–Rényi graphs

- / - -

Detecting rewired graphs

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance

		dataset					
	Method	MUTAG	PROTEINS	NCI1	ENZYMES	COLLAB	IMDB-B
NetLSD -	$ \begin{array}{c} h(G) \\ h(G)/h(\bar{K}) \end{array} $	$76.03 \\ 79.12$	91.81 94.90	$69.74 \\ 74.55$	92.51 95.20	$59.82 \\ 65.85$	$67.18 \\ 70.58$
	$w(G) \ w(G)/w(\bar{K})$	78.18 79.72	$93.04 \\ 89.00$	70.54 74.14	94.03 90.77	$69.01 \\ 70.35$	$75.26 \\ 75.54$
NIPS'17 ASONAM'13	FGSD NetSimile	$77.79 \\ 77.11$		$64.08 \\ 58.58$	$53.93 \\ 87.38$	$55.18 \\ 54.43$	56.23 54.44

Accuracy of classification of real vs rewired graphs

Classifying real graphs

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance

		dataset					
	Method	MUTAG	PROTEINS	NCI1	ENZYMES	COLLAB	IMDB-B
NetLSD -	$ \begin{array}{c} h(G) \\ h(G)/h(\bar{K}) \end{array} $	$86.47 \\ 85.32$	$64.89 \\ 65.73$	$\begin{array}{c} 66.49 \\ 67.44 \end{array}$	$31.99 \\ 33.31$	$68.00 \\ 69.42$	$68.04 \\ 70.17$
	$\frac{w(G)}{w(G)/w(\bar{K})}$	$83.35 \\ 81.72$	$66.80 \\ 65.58$	$70.78 \\ 67.67$	40.41 35.78	75.77 77.24	68.63 69.33
NIPS'17 ASONAM'13	FGSD NetSimile	$84.90 \\ 84.09$	65.30 62.45	$75.77 \\ 66.56$	41.58 33.23	$73.96 \\ 73.10$	$69.54 \\ 69.20$

Accuracy of graph classification

Expressive graph comparison

3 key properties:

- Permutation invariance
- Scale-adaptivity
- Size invariance
- + Scalability

= NetLSD

Questions?

code + data website write me github.com/xgfs tsitsul.in ← presentation will be there anton@tsitsul.in
Network Laplacian Spectral Descriptors: wave kernel trace

$$w_t = \operatorname{tr}(W_t) = \sum_j e^{-it\lambda_j}$$

We sample t logarithmically, and compare $\text{Re}(w_t)$ with L_2 distance w_t detects symmetries! \approx quantum random walks

Hearing the Shape of a Graph

"Can One Hear the Shape of a Drum?" – Kac 1966

No, as there are co-spectral drums (graphs)

Conjecture: # of co-spectral graphs $\rightarrow 0$ as # of nodes $\rightarrow \infty$ [Dufree, Martin 2015]