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Graph world is diverse

Different domains:
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Graph world is diverse

Different graph types:
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Graph world is diverse

Different modalities:
• Nodes

• Edges

• Motifs

• Subgraphs

• Whole graphs

• …
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Graph world is diverse

Different tasks:
• Classification

• Clustering

• Anomaly detection

• …
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Graph world is diverse
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Why representations?
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Clustering



Why representations?

11

We have fast & good algorithms for mining vector data…

low-dimensional representation

k-means

Clustering



Why representations?
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We have fast & good algorithms for mining vector data…

low-dimensional representation

Log. regression

Classification



What makes a Representation?

Good representation preserves geometry of the original space.
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What makes a Representation?

Good representation preserves geometry of the original space.
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SimilaritiesRepresentations

𝐿2 → geodesics



What makes a Representation?

Good representation preserves geometry of the original space.
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SimilaritiesRepresentations

𝐿2 → geodesics

Factorization, NNs, …



Part I: node representations

VERSE: Versatile Graph Embeddings
from Similarity Measures
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Neural node representations
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Nodes in random walks ≈ words in sentences → word2vec

Random walks[2,3]

Self-supervised neural network[1]

𝑊 𝑊𝑇

representation

[1] Efficient Estimation of Word Representations in Vector Space, Mikolov et al., NIPS 2013
[2] DeepWalk: Online Learning of Social Representations, Perozzi et al., KDD 2014
[3] node2vec: Scalable Feature Learning for Networks, Grover & Leskovec, KDD 2016



Wait, what?
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Do we know what do these walks mean?
• What do parameters change?

• What does the model optimize?
word2vec can be 

understood as matrix 
factorization!

[1] Metric recovery from directed unweighted graphs, Hashimoto et al., AISTATS 2015
[2] Neural Word Embedding as Implicit Matrix Factorization , Levy & Goldberg, NIPS 2014



Wait, what?

23

Do we know what do these walks mean?
• What do parameters change?

• What does the model optimize?
word2vec can be 

understood as matrix 
factorization!

Yes, but the assumptions are too strict!
(dimensionality = number of nodes)

[1] Metric recovery from directed unweighted graphs, Hashimoto et al., AISTATS 2015
[2] Neural Word Embedding as Implicit Matrix Factorization , Levy & Goldberg, NIPS 2014



Key observation
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Random walks define node similarity distributions!

𝑠𝑖𝑚(𝑢,⋅)
𝑢

𝑣

𝑠𝑖𝑚(𝑣,⋅)

𝑢 𝑣

Random walks converge 
to Personalized PageRank



Key observation
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Random walks define node similarity distributions!

𝑠𝑖𝑚(𝑢,⋅)
𝑢

𝑣

𝑠𝑖𝑚(𝑣,⋅)

𝑢 𝑣

Q: Can we inject similarities fully into the model?

Random walks converge 
to Personalized PageRank



Yes, we can!
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VERSE can learn similarity distributions

𝑢

Node 
similarities

Self-supervised neural network[1]

𝑊 𝑊𝑇

representation

𝑢

Q1: Which similarities can we possibly represent?

Q2: What other methods have to do with similarities?



Why similarities?
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• We can explicitly measure the quality
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• We can adapt the similarity to the data/task

• Examples in the paper: PageRank, SimRank, adjacency



Why similarities?
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• We can measure the quality

• We can adapt the similarity to the data/task

• Examples in the paper: PageRank, SimRank, adjacency

• Thinking about similarities provides insight:

• We show how DeepWalk & node2vec ≈ PPR

• VERSE uses 1 parameter instead of 5



VERSE graph embedding
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Algorithm for given 𝑠𝑖𝑚(𝑢,⋅):

• Initialize 𝑊~𝒩(0, 1)

• For 𝑢 ∈ 𝑉 optimize 𝑊 for softmax 𝑠𝑖𝑚(𝑢,⋅) by gradient descent

Full updates are too expensive - 𝑂 𝑛2

𝑊 𝑊𝑇

representation

𝑠𝑖𝑚(𝑢,⋅)

We make it faster 
via sampling!



Sampling in VERSE

We use Noise Contrastive Estimation

31

Negative Sampling does not 
preserve similarities!



Experimental setup

• Goal: diverse tasks & datasets

• PPR as default similarity

• Max. one day on 10-core server (try that at home!)

• Code @ GitHub, C for performance (don’t try that at home!)
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Social graph × link prediction
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Link prediction
(accuracy)



Different graphs × node clustering
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Node clustering
(modularity)



Web graph × node classification

35

Classification
(accuracy)



Take home messages

• We provide new useful abstraction: node similarities

• We create VERSE to explicitly work with similarities

• We develop a scalable approximation technique with NCE

• There is a room for improvement!
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Part II: graph representations

NetLSD: Hearing the Shape of a Graph

Anton Tsitsulin1 Davide Mottin1 Panagiotis Karras2

Alex Bronstein3 Emmanuel Müller1

1 HPI
Germany

2 Aarhus university
Denmark

3 Technion
Israel



Defining graph similarity

With it, we can do:
• Classification

• Clustering

• Anomaly detection

• …
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Scalability is key!

Two problem sources:
• Big graphs
• Many graphs

Solution: graph descriptors

39



Isomorphism ⇒ 𝑑 𝐺1, 𝐺2 = 0

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Local structures are important

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Global structure is important

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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We may need to disregard the size

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Network Laplacian Spectral Descriptors

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

+ Scalability

= NetLSD
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Optimal Transport

Geometry for probability measures supported on a space.
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Optimal Transport

Geometry for probability measures supported on a space.

L. Kantorovich
1939

G. Monge
1781
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Optimal Transport

Geometry for probability measures supported on a space.

L. Kantorovich
1939

G. Monge
1781
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Optimal Transport

Geometry for probability measures supported on a space.
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Optimal Transport

Geometry for probability measures supported on a space.

L. Kantorovich
1939

G. Monge
1781

Discrete case → 
Linear programming

𝜈
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Gromov-Wasserstein distance 

𝑋 𝑌
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Gromov-Wasserstein distance 

𝑋 𝑌
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Gromov-Wasserstein distance 

𝑑

ҧ𝑑

𝑋 𝑌
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Gromov-Wasserstein distance

𝑑

ҧ𝑑

𝑋 𝑌
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Heat diffusion has an explicit notion of scale
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Heat kernel has an explicit notion of scale

56



Scale corresponds to locality
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Scale corresponds to locality
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Spectral Gromov-Wasserstein =
Gromov-Wasserstein + heat kernel

Using heat kernel at all 𝑡 as a distance
doesn’t make our task any easier

59



Spectral Gromov-Wasserstein 
has a useful lower bound!

Using heat kernel at all 𝑡 as a distance
does make our task way easier!

We can just compare heat traces!
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Spectral Gromov-Wasserstein 
has a useful lower bound!

Using heat kernel at all 𝑡 as a distance
does make our task way easier!

We can just compare heat traces!
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Network Laplacian Spectral Descriptors

We sample 𝑡 logarithmically, and compare ℎ𝑡 with 𝐿2 distance
However, ℎ𝑡 is size-dependent!
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Size invariance = normalization

We can normalize by ℎ𝑡 of the complete (𝐾) or empty graph ഥ𝐾
Computation of all 𝜆 is still expensive: 𝑂(𝑛3)
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Scalability

We propose two options:
1. Use local Taylor expansion: 

Second term is degree distribution; third is weighted triangle count
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Scalability

We propose two options:
1. Use local Taylor expansion: 

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest
Linear extrapolation = explicit assumption on the manifold (Weyl’s law)
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Scalability

We propose two options:
1. Use local Taylor expansion: 

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest
Linear extrapolation = explicit assumption on the manifold (Weyl’s law)

Other spectrum approximators can be even more efficient!
[Cohen-Steiner et al. | KDD 2018]

[Adams et al. | arXiv 1802.03451] 
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Experimental design

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance
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Detecting graphs with communities

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

Accuracy of classification of SBM vs Erdős–Rényi graphs

NetLSD

NIPS’17
ASONAM’13
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Detecting rewired graphs

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

Accuracy of classification of real vs rewired graphs

NetLSD

NIPS’17
ASONAM’13
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Classifying real graphs

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

Accuracy of graph classification

NetLSD

NIPS’17
ASONAM’13
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Expressive graph comparison

3 key properties:
• Permutation invariance

• Scale-adaptivity

• Size invariance

+ Scalability

= NetLSD
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Questions?

code + data github.com/xgfs
website tsitsul.in ← presentation will be there
write me anton@tsitsul.in



Network Laplacian Spectral Descriptors:
wave kernel trace

We sample 𝑡 logarithmically, and compare Re(𝑤𝑡) with 𝐿2 distance
𝑤𝑡 detects symmetries!
≈quantum random walks
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Hearing the Shape of a Graph

“Can One Hear the Shape of a Drum?” – Kac 1966

No, as there are co-spectral drums (graphs)

Conjecture: # of co-spectral graphs → 0 as # of nodes → ∞
[Dufree, Martin 2015]
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