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Graph world is diverse

Different modalities:
* Nodes

Edges
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Subgraphs
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Different tasks:
 Classification
* Clustering
« Anomaly detection
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What makes a Representation?

Good representation preserves geometry of the original space.

Factorization, NNs, ...
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Part |: node representations

VERSE: Versatile Graph Embeddings
from Similarity Measures

Anton Tsitsulin® Davide Mottin' Panagiotis Karras? Emmanuel Muller?

Hasso / AARHUS
ﬂ Plattner P UNIVERSITY
Institut ,



Neural node representations

Nodes in random walks =~ words in sentences — word2vec

Random walks[23!

0000 Self-supervised neural network(1]

o0 0 00 N

©

[1] Efficient Estimation of Word Representations in Vector Space, Mikolov et al., NIPS 2013
[2] DeepWalk: Online Learning of Social Representations, Perozzi et al., KDD 2014
[3] node2vec: Scalable Feature Learning for Networks, Grover & Leskovec, KDD 2016
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Walit, what?

Do we know what do these walks mean?
 What do parameters change?
* What does the model optimize?

word2vec can be
understood as matrix
factorization!

\

[1] Metric recovery from directed unweighted graphs, Hashimoto et al., AISTATS 2015
[2] Neural Word Embedding as Implicit Matrix Factorization , Levy & Goldberg, NIPS 2014



Walit, what?

Do we know what do these walks mean?
 What do parameters change?
* What does the model optimize?

word2vec can be
understood as matrix
factorization!

\

Yes, but the assumptions are too strict!

(dimensionality = number of nodes)

[1] Metric recovery from directed unweighted graphs, Hashimoto et al., AISTATS 2015
[2] Neural Word Embedding as Implicit Matrix Factorization , Levy & Goldberg, NIPS 2014



Key observation

Random walks define node similarity distributions!

Random walks converge
to Personalized PageRank

sim(u,") sim(v,-)
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Key observation

Random walks define node similarity distributions!

Random walks converge
to Personalized PageRank

sim(u,") sim(v,-)

) (V)

Q: Can we inject similarities fully into the model?



Yes, we canl

VERSE can learn similarity distributions

Self-supervised neural network(!
T

@

Node
similarities

» w i wT

representation

Q1: Which similarities can we possibly represent?
Q2: What other methods have to do with similarities?
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Why similarities?

 We can measure the quality

 We can adapt the similarity to the data/task

« Examples in the paper: PageRank, SimRank, adjacency

* Thinking about similarities provides insight:

 We show how DeepWalk & node2vec = PPR
 VERSE uses 1 parameter instead of 5



VERSE graph embedding

Algorithm for given sim(u,):

* |nitialize W~N(0,1)

« For u € V optimize W for softmax sim(u,-) by gradient descent

Full updates are too expensive - 0(n?)

We make it faster
via sampling!
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Sampling iIn VERSE

We use Noise Contrastive Estimation

0.4

—8— full VERSE
—9—NS,s=3

NCE, s = 100

—®—-NCE,s =3 [

100

Lncr = 3 | 1ogPr(D = 1lsimg(u, o))+
u~P

v~simg(u,-)

kE5-qu) log %’\}’(D = 0|simg(u, v))

Negative Sampling does not
preserve similarities!
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Experimental setup

» Goal: diverse tasks & datasets
* PPR as default similarity
* Max. one day on 10-core server (try that at home!)

* Code @ GitHub, C for performance (don’t try that at home!)



Social graph x link prediction

edge representation

method Average Concat Hadamard L1 L2
VERSE 73.78 73.66 79.71 74.11 74.56
DEEPWALK 70.05 69.92 69.79 78.38 77.37
LINE 75.17 75.13 72.54 63.77 64.47
HOPE 71.89 71.90 70.22 71.22 70.63
HSVERSE 74.14 74.02 80.26 73.04 73.53
NODE2VEC 71.29 71.22 72.43 78.38 78.66
Feature Eng.

Link prediction
(accuracy)
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Different graphs x node clustering

method CoCit CoAuthor VK YouTube Orkut
VERSE 69.43 79.25 45.78 67.63 42.64
DEEPWALK 70.04 73.83 43.30 58.08 44.66
LINE 60.02 71.58 39.65 63.40 42.59
GRAREP 67.61 77.40 — — —
HOPE 42.45 69.57 21.70 37.94 —
HSVERSE 69.81 79.31 45.84 69.13 -
NODE2VEC 70.06 75.78 44.27 — —
Louvain 72.05 84.29 46.60 71.06 -

Node clustering

(modularity)



Web graph x node classification

labelled nodes, %

method 1% 3% 5% 7% 9%

VERSE 17.92 22.26 24.07 25.07 25.99
DEEPWALK 18.16 21.55 22.89 23.64 24.54
LINE 13.71 17.36 18.69 19.84 20.64
HOPE 9.22 13.80 15.09 16.18 16.78
HSVERSE 18.16 22.84 25.40 27.38 29.09

Classification
(accuracy)
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Take home messages

* We provide new useful abstraction: node similarities

 We create VERSE to explicitly work with similarities

* We develop a scalable approximation technique with NCE

'

* There is a room for improvement!
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Part |l graph representations

NetLSD: Hearing the Shape of a Graph

Anton Tsitsulin Davide Mottin Panagiotis Karras

Alex Bronstein Emmanuel Muller

/v

HPI Aarhus university Technion
Germany Denmark Israel
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With it, we can do:

» Classification
* Clustering
« Anomaly detection
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Scalability is key!

Two problem sources:
* Big graphs
 Many graphs

Solution: graph descriptors

-
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Isomorphism = d(G4,G,) =0

3 key properties:
* Permutation invariance
* Scale-adaptivity
 Size invariance
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Global structure Is important

3 key properties:

e Permutation invariance

» Scale-adaptivity N
e Size invariance S,
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We may need to disregard the size

s ¢ e

3 key properties:
* Permutation invariance
* Scale-adaptivity
 Size invariance




3 key properties:
* Permutation invariance
» Scale-adaptivity
 Size invariance

+ Scalability

= NetLSD
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Optimal Transport

Geometry for probability measures supported on a space.

45



Optimal Transport

Geometry for probability measures supported on a space.

G. Monge L. Kantorovich
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Optimal Transport

Geometry for probability measures supported on a space.

G. Monge L. Kantorovich

1781 1939 m

Discrete case —
Linear programming

50



Gromov-\Wassersteln distance
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Gromov-\Wassersteln distance
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Gromov-Wasserstein distance

l/p
dow p(X,Y) = —(mfZde xir) — d(y;i, Y ’ m; mj)
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Heat diffusion has an explicit notion of scale

Medium ¢

Small ¢



Heat kernel has an explicit notion of scale

Medium ¢

Small ¢



Scale corresponds to locality

n

H; = e_tf’ — (I)e_tAq)T — Z G_t/\j ij Qb;r

t=0.0100

j=1

t=1.0000

BN

t=10.0000

=

N
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Scale corresponds to locality

n
=t o m . —tAFT _ —tX; T
H, =e¢ — Qe "D = g e gbj gbj

j=1

t=0.0100 t=1.0000 t=10.0000




Spectral Gromov-Wasserstein =
Gromov-\Wasserstein + heat kernel

M >0

l/p
dgpw (X,Y) =infsupe™ 2(t4t" (ZZHX XTi, Tyl th(yj,yj’)pm@'jmi’j’)

t=1.0000

"y

B

ht

Using heat kernel at all t as a distance
doesn’t make our task any easier



Spectral Gromov-Wasserstein
has a useful lower bound!

l/p

dgyy ,(X,Y) = 1ﬂ1}ff§1>110)e 2t (ZZ |H (27, 40 H,}/(yj,yjf)pm@-jm@-:jf) > 3256_2(’5”_1) S tr(HY) — tr(HY)|
t=1.0000
Using heat kernel at all t as a distance
does make our task way easier!
'-.__.......




Spectral Gromov-Wasserstein
has a useful lower bound!

M >0

l/p

t>0

dgyy ,(X,Y) = infsupe” 2417 (ZZ |H (27, 40 Hf(yj,yjf)pm@-jm@-,j,) > sup e~ 2(tt71) |tr(H™) — tr(HY)|

t=1.0000

h

Using heat kernel at all t as a distance
does make our task way easier!

We can just compare heat traces!

61



Network Laplacian Spectral Descriptors
ht — tI’(Ht) — Z €_t>\j
J

We sample t logarithmically, and compare h; with L, distance
However, h; is size-dependent!



Size Invariance = normalization
ht — tI'(Ht) — Z €_t>\j
j

We can normalize by h, of the complete (K) or empty graph K
Computation of all A is still expensive: 0(n?)



Scalability

We propose two options: N ) 2
1. Use local Taylor expansion: h; = tr(e™"*) =) tr((_kiﬁ) ) mn—t tr(L) + %tr(ﬁz) T

k=0

Second term is degree distribution; third is weighted triangle count
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Scalability

We propose two options: N ) 2
1. Use local Taylor expansion: h; = tr(e™"*) =) tr((_kiﬁ) ) mn—t tr(L) + %tr(ﬁz) T

k=0

Second term is degree distribution; third is weighted triangle count

2. Compute top + bottom eigenvalues, approximate the rest
Linear extrapolation = explicit assumption on the manifold (Weyl’s law)

Other spectrum approximators can be even more efficient!

[Cohen-Steiner et al. | KDD 2018]
[Adams et al. | arXiv 1802.03451]



Experimental design

3 key properties:
* Permutation invariance
» Scale-adaptivity
 Size invariance

-
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Detecting graphs with communities

3 key properties:

» Scale-adaptivity
* Size invariance

n ~ P(A)
Method 64 128 256 012 1024
hG) 54.39 59.01 60.82 57.99 53.80
NetlSD (G /h(K) 54.53 62.27 70.83 76.45 78.40
€ w(G) B 56.23 63.77 69.57 71.66 70.34
w(G) /w(K) 55.51 63.85 72.12 77.59 79.39
NIPS'17  FGSD 55.44 54.99 53.86 52.74 50.92
ASONAM'13  NETSIMILE 59.55 56.57 59.41 66.23 60.58

Accuracy of classification of SBM vs Erd6s—Rényi graphs



Detecting rewired graphs

3 key properties:

» Scale-adaptivity
* Size invariance

dataset

Method MUTAG PROTEINS NCI1 ENZYMES COLLAB IMDB-B

h(G) B 76.03 91.81 69.74 92.51 59.82 67.18

NetlSD h(G)/h(K) 79.12 94.90 74.55 95.20 65.85 70.58
et w(G) B 78.18 93.04 70.54 94.03 69.01 75.26
w(G)/w(K)  79.72 89.00 74.14 90.77 70.35 75.54

NIPS'17 FGSD 77.79 60.11 64.08 53.93 55.18 06.23
ASONAM’13  NETSIMILE 77.11 85.73 58.58 87.38 54.43 54.44

Accuracy of classification of real vs rewired graphs
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Classifying real graphs

3 key properties:

» Scale-adaptivity
* Size invariance

dataset

Method MUTAG PROTEINS NCI1 ENZYMES COLLAB IMDB-B

h(G) B 86.47 64.89 66.49 31.99 68.00 68.04

NetLSD hG)/h(K) 85.32 65.73 67.44 33.31 69.42 70.17
et w(G) B 83.35 66.80 70.78 40.41 75.77 68.63
w(G)/w(K) 81.72 65.58 67.67 35.78 77.24 69.33

NIPS'17 FGSD 84.90 65.30 75.77 41.58 73.96 69.54
ASONAM’13 NETSIMILE 84.09 62.45 66.56 33.23 73.10 69.20

Accuracy of graph classification
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Expressive graph comparison

3 key properties:
* Permutation invariance
» Scale-adaptivity
 Size invariance

+ Scalability

= NetLSD

o
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Questions?

code + data github.com/xgfs
website tsitsul.in < presentation will be there
write me anton@tsitsul.in



Network Laplacian Spectral Descriptors:
wave kernel trace

Wt — tr(Wt) — Z B_it)\j
J

We sample t logarithmically, and compare Re(w;) with L, distance
w; detects symmetries!
~quantum random walks



Hearing the Shape of a Graph

“Can One Hear the Shape of a Drum?” - Kac 1966

No, as there are co-spectral drums (graphs)

Conjecture: # of co-spectral graphs — 0 as # of nhodes —»
[Dufree, Martin 2015]



