KU LEUVEN

Graph Embeddings in Practice: A Telco Churn Prediction Use Case

PhD Researcher: Sandra Mitrović

Supervisor: Prof. Dr. Jochen De Weerdt

Department of Decision Sciences and Information Management, KU Leuven

Graph Embedding Day, Lyon 07 Sept 2018

Background

Classification task

- Churn prediction (CP)
 - Predicting the probability of a customer to stop using company's services
 - Considered as the topmost challenge for Telcos [FCC report, 2009]
 - Despite **not** being novel
 - Given that acquisition costs are 5-10x higher than retention costs [Rosenberg et al, 1984]

What networks have to do with CP?

- Many different data sources and approaches used
- Recently, most frequently:
 - Data source: Usage data
 - Call Detail Records (CDRs)
 - w OR w/o: Socio-demographic, Subscription, Ordering, Call center (complaints), Invoicing...
 - Approach: Social Network Analysis (SNA)
- CDRs -> call graphs
 - Customer -> node
 - ∘ Call -> edge
 - Intensity of relationship -> edge weight
- Graph featurization
- Better predictive performance [Dasgupta et al, 2008; Richter et al, 2010; Backiel et al, 2016]

Date	Call Duration(sec)	Caller Number	Callee Number
2008-09-02 20:44:19	34	24002937	24997766
2008-09-02 20:42:56	26	24002937	24997766
2008-09-02 20:39:05	29	24002937	24997766
2008-09-02 20:38:06	24	24002937	24997766

KU LEUVEN

Call graph featurization

Extracting informative features from (call) graphs

- An intricate process, due to:
 - Complex structure / different types of information
 - Topology-based (structural)
 - Interaction-based (as part of customer behavior)
 - Edge weights quantifying customer behavior
 - Dynamic aspect
 - Call graph are time-evolving
 - Both nodes and edges volatile
 - Churn = lack of activity

KU LEU

Shortcomings of current related work

Not many studies account for dynamic aspects of call networks

[Dasgupta et al, 2008; Richter et al, 2010; Kusuma et al, 2013; Huang et al, 2015; Backiel et al, 2016]

- Especially not jointly with interaction and structural features
 - Structural features are under-exploited [Phadke, 2013; Backiel et al, 2016]
 - Due to high computational time in large graphs (e.g. betweenness centrality) [Zhu, 2011]
- And without using ad-hoc handcrafted features
 - No featurization methodology [*]
 - Dataset dependent [*]

Our goal

- Performing "holistic" featurization of call graphs
 - Incorporating both interaction and structural information
 - Avoiding/reducing feature handcrafting
 - While also capturing the dynamic aspect of the network

Our goal

- Performing "holistic" featurization of call graphs
 - Incorporating both interaction and structural information
 - Avoiding/reducing feature handcrafting
 - While also capturing the dynamic aspect of the network

Integrating interaction and structural information

Interactions

- RFM (Recency-Frequency-Monetary) model [Hughes, 1994]
 - Standard for quantifying customer behavior/interactions (w.r.t. target event)
 - Many different variants found in literature
 - RFM operationalizations (our work):
 - Summary RFM (*RFM_s*) total
 - Detailed RFM (*RFM_d*) direction & destination sliced: $X_{out_{h}}, X_{out_{o}}, X_{in}, X \in \{R, F, M\}$
 - Churn RFM (RFM_{ch}) only w.r.t. churners

RFM-Augmented networks

- Original topology extended
 - By introducing artificial nodes based on RFM
 - Structural information partially preserved
- Each of R, F, M partitioned into 5 quintiles
 - One artificial node assigned to each quintile
 - Interaction info embedded through extended topology

RFM features

- RFM_s
- $RFM_{s} \parallel RFM_{ch}$
- RFM_d
- $RFM_d \parallel RFM_{ch}$

Network topology

9

4 augmented networks

KU LEUV

Our goal

- Performing "holistic" featurization of call graphs
 - Incorporating both interaction and structural information
 - Avoiding/reducing feature handcrafting
 - While also capturing the dynamic aspect of the network

RL: Node2vec -> scalable node2vec

Node2vec

- Accounts both for previous and current node
- Additional parameters (p,q)
- To make walks efficient, requires precomputation of probability transitions:
 - On node level (1st time)
 - On edge level (successive)
 - Alias sampling used for efficient sampling
 - reduces O(n) to O(1)

However, does not scale well on large graphs! (our case ~ 40M edges)

Scalable node2vec

- Accounts only for current node
- No additional parameters
- Requires precomputation of probability transitions only on node level
 - Alias sampling retained

Therefore, scales well even on large graphs!

KU LEUVEN

Our goal

- Performing "holistic" featurization of call graphs
 - Incorporating both interaction and structural information
 - Avoiding/reducing feature handcrafting
 - While also capturing the dynamic aspect of the network

Dynamic graphs

Different definitions (current literature)

- G = (V, E, T)
- G = (V, E, T, ΔT)
- $G = (V, E, T, \sigma, \Delta T)$

Standard approach

Consider several static snapshots of a dynamic graph

Our setting

Monthly call graph G = (V, E) ->

Four temporal graphs $G_i = (V_i, E_i, w_i)$, i =1,...,4

Methodology – Graphical overview

Experimental Evaluation

Research questions

- RQ1: Do features taking into account dynamic aspects perform better than static ones?
- RQ2: Do RFM-augmented network constructions improve predictive performance?
- RQ3: Does the granularity of interaction information (summary, summary +churn, detailed, detailed+churn) influence the predictive performance?

Experiments

- \circ RFM_s stat. vs. RFM_s dyn. vs. AG_s stat. vs. AG_s dyn. -> summary
- \circ RFM_{s+ch} stat. vs. RFM_{s+ch} dyn. vs. AG_{s+ch} stat. vs. AG_{s+ch} dyn. -> summary+churn
- \circ RFM_d stat. vs. RFM_d dyn. vs. AG_d stat. vs. AG_d dyn. -> detailed
- RFM_{d+ch} stat. vs. RFM_{d+ch} dyn. vs. AG_{d+ch} stat. vs. AG_{d+ch} dyn. -> detailed+churn

Experimental results (1/2)

Prepaid

RFM	Static		Dynamic		Augmented network	Sta	atic	Dynamic	
	AUC	Lift	AUC	Lift	Augmented network	AUC	Lift	AUC	Lift
RFM_s	0.671	1.788	0.680	2.025	AG_s	0.680	2.061	0.694	2.013
$\left RFM_{s+ch} \right $	0.671	1.789	0.689	2.014	AG_{s+ch}	0.680	1.976	0.705	2.331
RFM_d	0.683	1.857	0.692	2.063	AG_d	0.678	1.898	0.693	2.019
$\left RFM_{d+ch} \right $	0.682	1.856	0.695	2.040	AG_{d+ch}	0.680	1.967	0.702	2.316

- RQ1 Answer: Dynamic better than static!
- RQ2 Answer: RFM-augmented networks improve predictive performance
- RQ3 Answer: Best performing interaction granularity is: summary+churn
 - Second best: detailed+churn

Experimental results (2/2)

Postpaid

RFM	Static		Dynamic		Aurmonted network	Static		Dynamic	
	AUC L	ift	AUC	Lift	Augmented network				
RFM_s	0.741 3.3	367	0.743	3.403	AG_s	0.759	3.602	0.768	3.919
RFM_{s+ch}	0.741 3.3	369	0.758	3.858	AG_{s+ch}	0.760	3.553	0.769	3.928
RFM_d						0.754	3.716	0.764	3.908
RFM_{d+ch}	0.750 3.7	751	0.767	3.885	AG_{d+ch}	0.755	3.720	0.764	3.901

- RQ1 Answer: Dynamic better than static!
- RQ2 Answer: RFM-augmented networks improve predictive performance
- RQ3 Answer: Best performing interaction granularity is summary+churn
 - Second best: summary

Shortcomings of current related work

- Call graphs are mostly considered to be static [Dasgupta et al, 2008; Richter et al, 2010; Kusuma et al, 2013; Huang et al, 2015; Backiel et al, 2016]
 - Despite: node/edge creation/deletion, node attributes/edge weights changes
 - Static approach has smoothing-out effect on customers' behavioral changes, hindering the valuable behavioral shifts leading to churn event
- Very few works explicitly address dynamic aspect
 - Time-series -based [Lee et al, 2011; Chen et al, 2012; Zhu et al, 2013]
 - Dynamic network –based (DN-based)

DN = a series of static networks defined over non-overlapping time-intervals

- Using ad-hoc hand-engineered features [Hill et al, 2006; Saravanan et al, 2012]
 - No featurization methodology
 - Featurization effort propagates through a sequence of static networks
 - · Interaction and structural features underexploited
- No discern of difference between behavior in different time intervals [Hill et al, 2006; Saravanan et al, 2012]

Methodology

- We propose **sliding-window** approach
 - Overlapping intervals
 - As contrast to a single (static) and non-overlapping intervals
- We propose considering two different network types:
 - Shifted networks
 - Difference networks
- Applying RL on these networks

Networks considered

- Shifted networks
 - Given original graph G = (V, E) for the observed time period T and set of intervals { [t_i, t_i+I) }_{i=1,...n}, s.t. t_i < t_{i+1} < t_i+I, where I is interval length
 - Shifted network $S_i = (V_i, E_i)$ corresponds to time interval $[t_i, t_i+I)$
 - **Unweighted** shifted network S^u_i (all edges equally weighted)
 - Weighted shifted network S_{i}^{w} (cum. weights of the original edges vs. artificial edges = 50:50)
- Difference networks
 - Build upon shifted networks
 - Idea: delineate differences at network level by detecting bidirectional (+/-) changes in customer activity for consecutive time intervals
 - Comparing the presence of edges and their corresponding weights (in case of a weighted graph)

Derivation of difference networks (1/2)

Original network (UW) / Unweighted artificial (UWA)

- Given shifted networks $S_i = (V_i, E_i)$ and $S_j = (V_j, E_j)$ where $t_i < t_j$:
 - Decreased difference network

$$D_{ij}^{-} = (V_{ij}^{-}, E_{ij}^{-}) \text{ with } E_{ij}^{-} = \{e \text{ with weight } w_e^i, \text{ if } e \in E_i \setminus E_j\} \cup \{e \text{ with weight } |w_e^j - w_e^i|, \text{ if } e \in E_i \cap E_j \text{ and } w_e^j - w_e^i < 0\}$$

Increased difference network

Derivation of difference networks (2/2)

Weighted network (W)

- First: consider artificial edges as unweighted in order to detect differences in edges (previous case)
- Next: for the remaining ones we perform weights scaling to maintain the ratio between cumulative weights (original edges vs. artificial edges) be 50:50.

Experimental Evaluation

Setting:

- Two datasets one prepaid, one postpaid
- Nine overlapping time intervals considered
- Stacked representations input to I2-regularized logistic regression
- Evaluation in terms of AUC & lift

Goal:

• Compare predictive performance of different representations obtained on various time periods (and corresponding networks)

Notation	Definition
$r_e(v)$	Node v repr. obtained on the entire-period network
$r_{q_i}(v)$	Node v repr. obtained on quarter-of-period network w_i
$r_{s_i}(v)$	Node v repr. obtained on shifted network S_i
$\Delta r_{s_{ij}}(v)$	Vector difference of node v repr. obtained on two consecutive shifted networks S_i and S_j
$r_{d_{ij}}^+(v)$	Node v repr. obtained on increase difference network D_{ij}^+
$r_{d_{ij}}^{-}(v)$	Node v repr. obtained on decrease difference network D_{ij}^-

Experimental Results

AUC

 Adding shifted and difference network –based representations to static and the one based on non-overlapping intervals improves AUC Prepaid

KU LEUVEN

Experimental Results

Dataset	r_e	r_{q_*}	<i>r</i> _{<i>q</i>*} Type	Shifted			Delta			Difference			
Dutasot	' e			1,100	$r_{s_{\bullet}}$	$r_{s_{*}} r_{e}$	$r_{s_{\bullet}} r_{q_{\bullet}}$	$\Delta r_{s_{\bullet}}$	$\Delta r_{s_{\star}} r_{e}$	$\Delta r_{s_{*}} r_{q_{*}}$	$r_{d_{*}}^{+/-}$	$r_{d_{\bullet}}^{+/-} r_e $	$r_{d_{\bullet}}^{+/-} r_{q_{\bullet}}$
			w	0.68010	0.69374	0.70149	0.67441	0.69236	0.70142	0.68094	0.69344	0.70271	
Dramaid	0.68000	0.69978 (2.36861) UW	3 "	(1.90333)	(2.08470)	(2.28820)	(1.82053)	(2.06782)	(2.28422)	(1.89887)	(2.03709)	(2.29457)	
Prepaid	(1.97600)		IIW	0.68108	0.69414	0.70187	0.67373	0.69210	0.70120	0.66856	0.68891	0.70272	
			0"	(1.92785)	(2.07769)	(2.29345)	(1.80206)	(2.06384)	(2.28151)	(1.78422)	(1.96129)	(2.29154)	
			UWA	(1.52705)	(2.07709)	(2.29343)	(1.00200)	(2.00304)		0.67881	0.69183	0.70164	
			UWA							(1.94855)	(2.06081)	(2.29218)	
			W	0.76346	0.77437	0.76714	0.75490	0.77072	0.76597	0.76405	0.77326	0.76843	
Destacid	0.76000	0.76488	0.76488	(3.92656)	(3.82203)	(3.94654)	(3.78977)	(3.78158)	(3.91716)	(3.94654)	(3.83070)	(3.94437)	
Postpaid	(3.55300)	(4.10355)	UW	0.76729	0.77539	0.76559	0.76072	0.77230	0.76687	0.73271	0.76562	0.76706	
				(3.95400)	(3.83143)	(3.89982)	(3.81120)		(3.90849)	(3.50054)	(3.73462)	(3.93570)	
			U	UWA (J.	(3.55400)	3.33400) (3.03143) (3.03980		(3.01120) (3.78550)		(3.90049)	0.75976	0.77029	0.76695
					UWA							(3.89091)	(3.81337)

- Comparing r_e , r_{q^*} , r_{s^*} , r_{d^*} (in terms of AUC):
 - $_{\circ}$ ~ r_{q^{\star}} outperforms others except for postpaid unweigthed (r_{s^{\star}})
 - Weighted: r_e performs the worst
 - $_{\circ}$ Unweighted: $r_{d^{*}}^{+/-}$ performs the worst
- Comparing shifted and difference (in terms of AUC):
 - $_{\odot}$ Weighted: $r_{d^{*}}^{+/-}$ outperforms $r_{s^{*}}$
 - $_{\odot}$ Unweighted: $r_{s^{\star}}$ outperforms $r_{d^{\star}}^{\text{+/-}}$
 - $_{\odot}$ Combining $r_{s^{\star}}$ and $r_{d^{\star}}^{+/-}$ with $r_{e},\,r_{q^{\star}}$ results become dataset-dependent

KU LEUV

Additional analysis

• The results improved, but still could not win r_{s^*} for unweighted

KU LEUVEN

Conclusion

- We designed **RFM-augmentations** of original graphs
 - Enable conjoining interaction and structural information
- We devise a **scalable** adaption of the original node2vec approach
 - Relaxing random walk generation and avoiding grid search tuning for two additional parameters
- We attempt to take into account dynamic aspect of the networks
 - We propose applying **representation learning on top of:**
 - Networks obtained from non-overlapping intervals
 - Shifted networks (overlapping intervals)
 - Difference networks

to **explicitly capture changes** in customer behavior.

• We demonstrate that compared to only static, non-overlapping intervals-based dynamic representations perform better and **adding shifted/difference** network representations **results in even better performance improvements.**

KU LEU

Future research

- Experiment with more sophisticated methods for assessing dynamic differences in customer behavior
- Analyzing the effect of applying temporal random walks
- Investigating how different approaches which involve shifting temporal aspect into the RL part affect predictive performance

References

- FCC, 2009. 13th Annual report and analysis of competitive market conditions with respect to mobile wireless, including commercial mobile services, Federal Communication Commission, WT Docket 10-133.
- Verbeke et al., 2010. *Customer churn prediction: does technique matter?* In Proceedings of the Joint Statistical Meeting, JSM2010, Vancouver, Canada.
- Grover and Leskovec, 2016. Node2Vec: Scalable Feature Learning for Networks. In Proceedings of KDD '16, San Fransicso, California, US.
- Mikolov et al., 2013. Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).
- Perozzi et al., 2014. *Deepwalk: Online learning of social representations.* In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 701-710). ACM.
- Tang et al., 2015. *Line: Large-scale information network embedding.* In Proceedings of the 24th International Conference on World Wide Web (pp. 1067-1077). ACM. Chicago.
- Grover and Leskovec, 2016. Node2Vec: Scalable Feature Learning for Networks. In Proceedings of KDD '16, San Fransicso, California, US.

KU LEUVEN

Bibliography

- Mitrovic et al., 2017a. Scalable RFM-enriched Representation Learning for Churn Prediction. DSAA 2017: 79-88.
- Mitrovic et al., 2017b. Churn Prediction Using Dynamic RFM-Augmented Node2vec. PAP@PKDD/ECML 2017: 122-138.
- Mitrovic et al., 2018. *Dyn2Vec: Exploiting dynamic behaviour using difference networks-based node embeddings for classification. ICDATA 2018: 194-200.*

Thank you!

Questions?

Email: sandra.mitrovic@kuleuven.be

KU LEUVEN