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Background 
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Classification task 
 

•  Churn prediction (CP) 
o  Predicting the probability of a customer to stop using company’s 

services 

o  Considered as the topmost challenge for Telcos [FCC report, 2009] 
•  Despite not being novel 
•  Given that acquisition costs are 5-10x higher than retention costs  
     [Rosenberg et al, 1984] 



What networks have to do with CP? 

3 

 
•  Many different data sources and approaches used 
 

•  Recently, most frequently: 
o  Data source: Usage data 

•  Call Detail Records (CDRs) 
•  w OR w/o: Socio-demographic, Subscription, Ordering, Call center (complaints), Invoicing… 

o  Approach: Social Network Analysis (SNA) 

•  CDRs -> call graphs 
o  Customer -> node 
o  Call -> edge 
o  Intensity of relationship -> edge weight 

•  Graph featurization 

•  Better predictive performance [Dasgupta et al, 2008; Richter et al, 2010; Backiel et al, 2016] 



Call graph featurization 
Extracting informative features from (call) graphs  
 

•  An intricate process, due to: 

o  Complex structure / different types of information 
•  Topology-based (structural) 
•  Interaction-based (as part of customer behavior) 

•  Edge weights quantifying customer behavior 

 
o  Dynamic aspect 

•  Call graph are time-evolving 
•  Both nodes and edges volatile 

•  Churn = lack of activity 
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Shortcomings of current related work 
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Not many studies account for dynamic aspects of call networks  
[Dasgupta et al, 2008; Richter et al, 2010; Kusuma et al, 2013; Huang et al, 2015; Backiel et al, 2016] 

o  Especially not jointly with interaction and structural features 
•  Structural features are under-exploited [Phadke, 2013; Backiel et al, 2016] 
•  Due to high computational time in large graphs (e.g. betweenness centrality)  
[Zhu, 2011] 

o  And without using ad-hoc handcrafted features  
•  No featurization methodology [*] 
•  Dataset dependent [*] 



Our goal 
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•  Performing “holistic” featurization of call graphs  
 

•  Incorporating both interaction and structural information 
  
•  Avoiding/reducing feature handcrafting 

•  While also capturing the dynamic aspect of the network 



Our goal 
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•  Performing “holistic” featurization of call graphs  

•  Incorporating both interaction and structural information 
  
•  Avoiding/reducing feature handcrafting 

•  While also capturing the dynamic aspect of the network 
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Interactions 
 
•  RFM (Recency-Frequency-Monetary) model [Hughes, 1994]  
 

•  Standard for quantifying customer behavior/interactions (w.r.t. target event) 

•  Many different variants found in literature 

•  RFM operationalizations (our work): 

•  Summary RFM (RFMs) – total  

•  Detailed RFM (RFMd)   – direction & destination sliced: Xout_h, Xout_o, Xin , X    {R,F,M} 

•  Churn RFM (RFMch)     – only w.r.t. churners 

∈

Integrating interaction and structural 
information 
 



RFM-Augmented networks 
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•  Original topology extended 
o  By introducing artificial nodes based on RFM  
o  Structural information partially preserved 

•  Each of R, F, M partitioned into 5 quintiles 
o  One artificial node assigned to each quintile 
o  Interaction info embedded through extended 

topology 

RFM features 
 
•  RFMs 
•  RFMs  || RFMch 
•  RFMd 
•  RFMd  || RFMch

   

+

Network topology
  

4 augmented networks 
 
•  AGs

 

•  AGs+ch 
•  AGd

 

•  AGd+ch    



Our goal 
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•  Performing “holistic” featurization of call graphs  

•  Incorporating both interaction and structural information 
  
•  Avoiding/reducing feature handcrafting 

•  While also capturing the dynamic aspect of the network 



RL: Node2vec -> scalable node2vec 
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Node2vec  
•  Accounts both for previous 

and current node 
•  Additional parameters (p,q) 
•  To make walks efficient, 

requires precomputation of 
probability transitions: 
o  On node level (1st time) 

o  On edge level (successive) 

o  Alias sampling used for 
efficient sampling  
•  reduces O(n) to O(1) 

However, does not scale well on 
large graphs!  
(our case ~ 40M edges) 
 
 
 
 
 

 

Scalable node2vec 
•  Accounts only for current node 
•  No additional parameters 
•  Requires precomputation of 

probability transitions only on 
node level 
o  Alias sampling retained 

 
Therefore, scales well even on 
large graphs! 

 

 



Our goal 
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•  Performing “holistic” featurization of call graphs  

•  Incorporating both interaction and structural information 
  
•  Avoiding/reducing feature handcrafting 

•  While also capturing the dynamic aspect of the network 



Dynamic graphs 
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Different definitions (current literature) 
•  G = (V, E, T) 
•  G = (V, E, T, ΔT) 
•  G = (V, E, T, σ, ΔT) 
 

Standard approach 
•  Consider several static snapshots of a dynamic graph 
 

Our setting 
 
•  Monthly call graph G = (V, E) -> 

  Four temporal graphs Gi = (Vi, Ei, wi), i =1,..,4 



Methodology – Graphical overview 
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Experimental Evaluation 
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Research questions 
 

•  RQ1: Do features taking into account dynamic aspects perform better 
than static ones? 

•  RQ2: Do RFM-augmented network constructions improve predictive 
performance? 

•  RQ3: Does the granularity of interaction information (summary, summary
+churn, detailed, detailed+churn) influence the predictive performance? 

 

Experiments 
o  RFMs  stat.      vs. RFMs  dyn.    vs.  AGs stat.     vs.  AGs dyn.     -> summary 

o  RFMs+ch stat. vs. RFMs+ch dyn. vs.  AGs+ch stat. vs.  AGs+ch dyn.  -> summary+churn 

o  RFMd   stat.     vs. RFMd   dyn.   vs.  AGd  stat.     vs.  AGd dyn.    -> detailed 
o  RFMd+ch stat. vs. RFMd+ch dyn. vs.  AGd+ch stat. vs.  AGd+ch dyn.  -> detailed+churn 



Experimental results (1/2) 
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Prepaid 
 

 

•  RQ1 Answer: Dynamic better than static! 
  

•  RQ2 Answer: RFM-augmented networks improve predictive performance 

•  RQ3 Answer: Best performing interaction granularity is: summary+churn 
•  Second best: detailed+churn 

 



Experimental results (2/2) 
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Postpaid 
 

 

•  RQ1 Answer: Dynamic better than static! 
  

•  RQ2 Answer: RFM-augmented networks improve predictive performance 

•  RQ3 Answer: Best performing interaction granularity is summary+churn 
•  Second best: summary 



Shortcomings of current related work 
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•  Call graphs are mostly considered to be static [Dasgupta et al, 2008; Richter et al, 
2010; Kusuma et al, 2013; Huang et al, 2015; Backiel et al, 2016] 
o  Despite: node/edge creation/deletion, node attributes/edge weights changes 
o  Static approach has smoothing-out effect on customers’ behavioral changes, 

hindering the valuable behavioral shifts leading to churn event 

•  Very few works explicitly address dynamic aspect 
o  Time-series -based [Lee et al, 2011; Chen et al, 2012; Zhu et al, 2013] 

o  Dynamic network –based (DN-based) 
      DN = a series of static networks defined over non-overlapping time-intervals 

•  Using ad-hoc hand-engineered features [Hill et al, 2006; Saravanan et al, 2012] 
•  No featurization methodology 
•  Featurization effort propagates through a sequence of static networks 
•  Interaction and structural features underexploited 

•  No discern of difference between behavior in different time intervals [Hill et al, 2006; 
Saravanan et al, 2012] 
 



Methodology 
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•  We propose sliding-window approach 
•  Overlapping intervals 
•  As contrast to a single (static) and non-overlapping intervals 

 
•  We propose considering two different network types: 

•  Shifted networks 
•  Difference networks 

•  Applying RL on these networks 
 
 



Networks considered 
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•  Shifted networks 
•  Given original graph G = (V, E) for the observed time period T and set of 

intervals { [ti, ti+l) }i=1,…n, s.t. ti < ti+1 < ti+l, where l is interval length 

•  Shifted network Si = (Vi, Ei) corresponds to time interval [ti, ti+l)  
•  Unweighted shifted network Su

i  (all edges equally weighted) 
•  Weighted shifted network Sw

i    
(cum. weights of the original edges vs. artificial edges = 50:50) 

 
•  Difference networks 

•  Build upon shifted networks 

•  Idea: delineate differences at network level by detecting bidirectional (+/-) 
changes in customer activity for consecutive time intervals 

•  Comparing the presence of edges and their corresponding weights (in case 
of a weighted graph) 



Derivation of difference networks (1/2) 
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Original network (UW) / Unweighted artificial (UWA) 
 

•  Given shifted networks Si = (Vi, Ei) and Sj = (Vj, Ej) where ti < tj : 
•  Decreased difference network  
                           with  
 
•  Increased difference network  

          with   
 

   
 



Derivation of difference networks (2/2) 
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Weighted network (W) 
 
 

•  First: consider artificial edges as unweighted in order to detect differences in 
edges (previous case) 

•  Next: for the remaining ones we perform weights scaling to maintain the ratio 
between cumulative weights (original edges vs. artificial edges) be 50:50. 

   
 



Experimental Evaluation 
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Setting: 
•  Two datasets – one prepaid, one postpaid 
•  Nine overlapping time intervals considered  
•  Stacked representations input to l2-regularized logistic regression 
•  Evaluation in terms of AUC & lift  
Goal: 
•  Compare predictive performance of different representations obtained on various 

time periods (and corresponding networks) 

 



Experimental Results 
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•  Adding shifted and difference network –based representations to static 
and the one based on non-overlapping intervals improves AUC 

 

AUCW > AUCUW/UWA  
Except for re || rs* for 
postpaid 

 



Experimental Results 
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•  Comparing re, rq*, rs*, rd*

+/- (in terms of AUC):  
o  rq* outperforms others except for postpaid unweigthed (rs*) 
o  Weighted: re performs the worst 
o  Unweighted: rd*

+/- performs the worst 

•  Comparing shifted and difference (in terms of AUC):  
o  Weighted: rd*

+/- outperforms rs* 

o  Unweighted: rs* outperforms rd*
+/- 

 

o  Combining rs* and rd*
+/- 

 with re, rq* results become dataset-dependent 



Additional analysis 
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•  rs1 || rd*
+/- 

 
 

 
 
 
•    

•  The results improved, but still could not win rs* for unweighted 



Conclusion 
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•  We designed RFM-augmentations of original graphs  
o  Enable conjoining interaction and structural information 

•  We devise a scalable adaption of the original node2vec approach  
o  Relaxing random walk generation and avoiding grid search tuning for two 

additional parameters 
•  We attempt to take into account dynamic aspect of the networks 

o  We propose applying representation learning on top of: 
•  Networks obtained from non-overlapping intervals 
•  Shifted networks (overlapping intervals) 

•  Difference networks 
to explicitly capture changes in customer behavior. 

•  We demonstrate that compared to only static, non-overlapping intervals-based 
dynamic representations perform better and adding shifted/difference 
network representations results in even better performance improvements. 



Future research 
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•  Experiment with more sophisticated methods for assessing 
dynamic differences in customer behavior  

•  Analyzing the effect of applying temporal random walks 

•  Investigating how different approaches which involve shifting 
temporal aspect into the RL part affect predictive performance 
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Thank you! 
 
 

      Questions?   
  

Email: sandra.mitrovic@kuleuven.be      
  


