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Background

Classification task

* Churn prediction (CP)

o Predicting the probability of a customer to stop using company’s
services

o Considered as the topmost challenge for Telcos [FCC report, 2009]

* Despite not being novel
« Given that acquisition costs are 5-10x higher than retention costs

[Rosenberg et al, 1984]

B v



What networks have to do with CP?

* Many different data sources and approaches used

Date Call Duration{sec) Caller Number Callee Number
* Recently, mOSt freq uently: 2008-09-02 20:44:19 34 24002937 24997766
2008-09-02 20:42:56 26 24002937 24997766
o Data source: Usage data O i o F—
» Call Detail Records (CDRs) 2008.09.02 20:3806 24 24002937 24997766

w OR w/o: Socio-demographic, Subscription, Ordering, Call center (complaints), Invoicing...

o Approach: Social Network Analysis (SNA)

CDRs -> call graphs
o Customer -> node
o Call -> edge

M'\"
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o Intensity of relationship -> edge weight

Graph featurization

Better predictive performance [Dasgupta et al, 2008; Richter et al, 2010; Backiel et al, 2016]
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Call graph featurization

Extracting informative features from (call) graphs

* An intricate process, due to:

o Complex structure / different types of information

» Topology-based (structural)

 Interaction-based (as part of customer behavior)
- Edge weights quantifying customer behavior

W

o Dynamic aspect
« Call graph are time-evolving

« Both nodes and edges volatile
- Churn = lack of activity




Shortcomings of current related work

Not many studies account for dynamic aspects of call networks
[Dasgupta et al, 2008; Richter et al, 2010; Kusuma et al, 2013; Huang et al, 2015; Backiel et al, 2016]

o Especially not jointly with interaction and structural features
» Structural features are under-exploited [Phadke, 2013; Backiel et al, 2016]
» Due to high computational time in large graphs (e.g. betweenness centrality)
[Zhu, 2011]
o And without using ad-hoc handcrafted features
* No featurization methodology [*]
« Dataset dependent [*]




Our goal

« Performing “holistic” featurization of call graphs

* Incorporating both interaction and structural information
» Avoiding/reducing feature handcrafting

» While also capturing the dynamic aspect of the network
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Integrating interaction and structural
information

Interactions
 RFM (Recency-Frequency-Monetary) model [Hughes, 1994]
« Standard for quantifying customer behavior/interactions (w.r.t. target event)
Many different variants found in literature

* RFM operationalizations (our work):
Summary RFM (RFM,) — total

Detailed RFM (RFM,) - direction & destination sliced: X,; ,, X, o, Xin, X € {R,EM}

Churn RFM (RFM,,) - only w.r.t. churners




RFM-Augmented networks

* Original topology extended
o By introducing artificial nodes based on RFM
o Structural information partially preserved

 Each of R, F, M partitioned into 5 quintiles
o One artificial node assigned to each quintile
o Interaction info embedded through extended

topology
RFM features Network topology 4 augmented networks
«  RFM, .+ AG,
* RFM, || RFM, + « AG,,.
«  RFM, .« AG,
* RFM, || RFM,j, * AGyu
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Our goal

« Performing “holistic” featurization of call graphs

* Incorporating both interaction and structural information
« Avoiding/reducing feature handcrafting

» While also capturing the dynamic aspect of the network
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RL: Node2vec -> scalable node2vec

Node2vec Scalable node2vec

* Accounts both for previous * Accounts only for current node
and current node * No additional parameters

* Additional parameters (p,q) * Requires precomputation of

* To make walks efficient, probability transitions only on
requires precomputation of node level
probability transitions: | o Alias sampling retained

o On node level (15t time)

o On edge level (successive) Therefore, scales well even on

o Alias sampling used for large graphs!
efficient sampling
reduces O(n) to O(1)

However, does not scale well on
large graphs!

(our case ~ 40M edges) ’ w



Our goal

« Performing “holistic” featurization of call graphs

* Incorporating both interaction and structural information
» Avoiding/reducing feature handcrafting

« While also capturing the dynamic aspect of the network
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Dynamic graphs

Different definitions (current literature)
« G=(V,ET)

« G=(V,E,TAT)

« G=(V,E, T, o AT)

Standard approach
* Consider several static snapshots of a dynamic graph

Our setting

* Monthly call graph G = (V, E) ->
Four temporal graphs G. = (V,, E;, w), i =1,..,4
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Methodology — Graphical overview

Week1 - based
— —
RFM feat.

Week2 - based ;
— —>
RFM feat.

Week3 - based
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Experimental Evaluation
Research questions

* RQ1: Do features taking into account dynamic aspects perform better
than static ones?

* RQ2: Do RFM-augmented network constructions improve predictive
performance?

* RQ3: Does the granularity of interaction information (summary, summary
+churn, detailed, detailed+churn) influence the predictive performance?

Experiments
o RFM stat. vs. RFM, dyn. vs. AGgstat. vs. AG,dyn. ->summary
o RFM,,, stat. vs. RFM,, dyn. vs. AGg,., Stat. vs. AGg,, dyn. -> summary+churn
o RFM, stat. vs. RFM, dyn. vs. AG, stat. vs. AG,dyn. ->detailed
o RFM,,.,stat. vs. RFM,, ., dyn. vs. AG,,.,Stat. vs. AG,,.,dyn. -> detailed+churn
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Experimental results (1/2)

Prepaid
Static Dynamic Static Dynamic
RFM oot Lo [TAUC] Life || Augmented network| o rer AT Lo
RFM, |/0.671|1.788/|0.680/2.025 AG; 0.680/2.061|/0.694 2.013
RF M| 0.671(1.789(0.689| 2.014 AGsich 0.680/1.976 ||0.705 2.331
RFM,; |/0.683(1.857/(0.692/2.063 AGq 0.678| 1.898 1|0.693| 2.019
REMg+c1|/0.682(1.856((0.695| 2.040 AGasch 0.680/1.967 |/0.702/2.316

 RQ1 Answer: Dynamic better than static!

 RQ2 Answer: RFM-augmented networks improve predictive performance

 RQ3 Answer: Best performing interaction granularity is: summary+churn
« Second best: detailed+churn

m o




Experimental results (2/2)

Postpaid
Static Dynamic Static Dynamic
RFM | oot Life (TAUC [ Lift || Augmented network|xreree e
RFM, [/0.741(3.367//0.74313.403 AG, 0.759/3.602//0.768/3.919
RF M, 0.741(3.369][ 0.758 |3.858 AGsich 0.760/3.553(/0.769(3.928
RFM, 1/0.750(3.750([0.757 |3.874 AGq4 0.754/3.716//0.764/3.908
RFM..1]/0.750(3.751/[0.767(3.885 AGasicn 0.755/3.720(/ 0.764 [3.901

 RQ1 Answer: Dynamic better than static!

 RQ2 Answer: RFM-augmented networks improve predictive performance

 RQ3 Answer: Best performing interaction granularity is summary+churn
« Second best: summary
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Shortcomings of current related work

e (Call graphs are mostly considered to be static [Dasgupta et al, 2008; Richter et al,
2010; Kusuma et al, 2013; Huang et al, 2015; Backiel et al, 2016]

o Despite: node/edge creation/deletion, node attributes/edge weights changes

o Static approach has smoothing-out effect on customers’ behavioral changes,
hindering the valuable behavioral shifts leading to churn event

* Very few works explicitly address dynamic aspect
o Time-series -based [Lee et al, 2011; Chen et al, 2012; Zhu et al, 2013]
o Dynamic network —based (DN-based)

DN = a series of static networks defined over non-overlapping time-intervals

« Using ad-hoc hand-engineered features [Hill et al, 2006; Saravanan et al, 2012]
+ No featurization methodology
- Featurization effort propagates through a sequence of static networks

+ Interaction and structural features underexploited

* No discern of difference between behavior in different time intervals [Hill et al, 2006;
Saravanan et al, 2012]




Methodology

* We propose sliding-window approach

» Overlapping intervals
As contrast to a single (static) and non-overlapping intervals

« We propose considering two different network types:
» Shifted networks
« Difference networks

* Applying RL on these networks
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Networks considered

« Shifted networks

» Given original graph G = (V, E) for the observed time period T and set of
intervals { [t, t+) }=; ., s.t. t <t,, <t+l, where | is interval length

« Shifted network S, = (V,, E;) corresponds to time interval [t, t+])
* Unweighted shifted network SY, (all edges equally weighted)
« Weighted shifted network S¥,
(cum. weights of the original edges vs. artificial edges = 50:50)

 Difference networks

e Build upon shifted networks

» |dea: delineate differences at network level by detecting bidirectional (+/-)
changes in customer activity for consecutive time intervals

« Comparing the presence of edges and their corresponding weights (in case
of a weighted graph)
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Derivation of difference networks (1/2)

Original network (UW) / Unweighted artificial (UWA)

* Given shifted networks S;= (V;, E;) and S;= (V,, E;) where t; <t :
« Decreased difference network
D;; = (V;;,E;) With E; = {e with weight wk, ife € E;\ E;} U
{e with weight |w] —w’|, ife € E; N E; and w! — w, < 0}

* |ncreased difference network
Ef) with E} = {ewith we.ight w:;, ifec E;\ E;}U -

{e with weight w] — w], ife € E; N E; and w! — w] > 0}
S, S D 1+ D*t,m

D;;- = (Vit
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Derivation of difference networks (2/2)

Weighted network (W)

First: consider artificial edges as unweighted in order to detect differences in
edges (previous case)

Next: for the remaining ones we perform weights scaling to maintain the ratio
between cumulative weights (original edges vs. artificial edges) be 50:50.

S, Sis1 D e D111




Experimental Evaluation

Setting:

* Two datasets — one prepaid, one postpaid

* Nine overlapping time intervals considered

» Stacked representations input to I2-regularized logistic regression
* Evaluation in terms of AUC & lift

Goal:

 Compare predictive performance of different representations obtained on various
time periods (and corresponding networks)

| Notation || Definition
re(v) Node v repr. obtained on the entire-period network

rq; (v) Node v repr. obtained on quarter-of-period network w,
rs: (V) Node v repr. obtained on shifted network S;

Ars;;(v)|| Vector difference of node v repr. obtained on two consecutive
shifted networks S; and S;

r;:_j (v) Node v repr. obtained on increase difference network D;']'

r‘;‘_j (v) Node v repr. obtained on decrease difference network D;
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Experimental Results

Adding shifted and difference network —based representations to static
and the one based on non-overlapping intervals improves AUC

AUC

Prepaid

0.70 1

0.69 -
o
0.68 - OO
Postpaid
0.775 Ao L TEECEETE TP UL XY T LT ELERRYY ) .--e.-,u.......,.,.._.;.-.._..“.A...,..x. ......
=X
0.7 70 Ao e

0.765 4~

0.760 A

re

re|lrs.

-
- rellrg.

' rq.”rs.

-
rg.llra.

uw
UWA
W

AUC,, > AUC,uwa

Except for r, || r,. for
postpaid




Experimental Results

Dataset R R Type Shifted Delta Difference
o ra. | rellre | rellra, | Ara, [ Argllre | Arollrg, | 7377 [ 73/ llre | r37 lIra.
W 0.68010 0.69374 0.70149 0.67441 0.69236 0.70142 0.68094 0.69344 0.70271
Prepaid 0.68000 0.69978 (1.90333) | (2.08470) | (2.28820) | (1.82053) | (2.06782) (2.28422) (1.89887) | (2.03709) (2.29457)
(1.97600) | (2.36861) || yw || 068108 | 0.69414 | 070187 | 0.67373 | 069210 | 070120 e | (156120 | (229155
(1.92785) | (2.07769) | (2.29345) | (1.80206) | (2.06384) (2.28151) 0' STRRI 0' 5183 0'701 )
UWA ’ : ’
(1.94855) | (2.06081) (2.29218)
W 0.76346 0.77437 0.76714 0.75490 0.77072 0.76597 0.76405 0.77326 0.76843
Postpaid 0.76000 0.76488 (3.92656) | (3.82203) | (3.94654) | (3.78977) | (3.78158) (3.91716) (3.94654) | (3.83070) (3.94437)
? (3.55300) | @.10355) | yw [ 076720 | 077539 | 076559 | 076072 | 077230 | 076687 (g'ggggl) (g‘;’gigg) (g'ggggg)
p— (3.95400) | (3.83143) | (3.89982) | (3.81120) | (3.78350) (3.90849) 075976 077009 076605
(3.89091) | (3.81337) (3.92318)
* Comparing rg, e, fg, g (in terms of AUC):
o re-outperforms others except for postpaid unweigthed (r:)
o  Weighted: r_ performs the worst
o Unweighted: r "~ performs the worst
o

Comparing shifted and difference (in terms of AUC):

o  Weighted: ry.*"- outperforms r,.

o Unweighted: r,. outperforms r.*"

o  Combining rg.and rg*" with r,, r.. results become dataset-dependent
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Additional analysis

Foq || gt

0.680

0.675 A

0.670 -

- W
O —_— UW
<D: I Prepaid
I Postpaid
0.76 -
0.75 A
0.74 4

r. +/ - +/ -
s g, r51||rd.
Representations used

* The results improved, but still could nof win r,. for unweighted




Conclusion

* We designed RFM-augmentations of original graphs
o Enable conjoining interaction and structural information
* We devise a scalable adaption of the original node2vec approach

o Relaxing random walk generation and avoiding grid search tuning for two
additional parameters

*  We attempt to take into account dynamic aspect of the networks

o We propose applying representation learning on top of:
Networks obtained from non-overlapping intervals
Shifted networks (overlapping intervals)

Difference networks
to explicitly capture changes in customer behavior.

* We demonstrate that compared to only static, non-overlapping intervals-based
dynamic representations perform better and adding shifted/difference
network representations results in even better performance improvements.
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Future research

* Experiment with more sophisticated methods for assessing
dynamic differences in customer behavior

* Analyzing the effect of applying temporal random walks

* Investigating how different approaches which involve shifting
temporal aspect into the RL part affect predictive performance
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Thank you!

Questions?

Email: sandra.mitrovic@kuleuven.be



