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Neglected aspects of graph embeddings

Capturing uncertainty

Robustness to noise

Robustness to adversarial attacks 
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Nodes are points in a low-dimensional space
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Nodes are distributions
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Graph2Gauss - 3 key modeling ideas
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𝒩( 𝜇𝑖 , Σ𝑖)

𝑥𝑖

𝑓𝜃(𝑥𝑖) deep
encoder



Uncertainty

Embed nodes as (Gaussian) distributions

Sources  of uncertainty:

• Conflicting structure and attributes

• Heterogenous neighborhood 

• Noise, outliers, anomalies, ….
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Personalized ranking

For each node 𝑖: nodes in its (𝑘)-hop neighborhood

should be closer to 𝑖 compared to nodes 

in its (𝑘 + 1)-hop neighborhood
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Personalized ranking

For each node 𝑖: nodes in its (𝑘)-hop neighborhood

should be closer to 𝑖 compared to nodes 

in its (𝑘 + 1)-hop neighborhood

Example: closer in terms of the KL Diveregence

KL is asymmetric ⇒ handles directed graphs
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Personalized ranking

Personalized ranking implies

pairwise constraints for node 𝑖

D𝐾𝐿(𝒩𝑗||𝒩𝑖) < D𝐾𝐿 (𝒩𝑗′||𝒩𝑖)

∀𝑗 ∈ 𝑁𝑖
(𝑘)
, ∀𝑗′ ∈ 𝑁𝑖

(𝑘′)
, ∀𝑘 < 𝑘′
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set of nodes in the 𝑘-hop neighborhood of node 𝑖



Inductiveness 

Generalize to unseen nodes by learning 

a mapping from features to embeddings
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Graph2Gauss - 3 key modeling ideas
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Learning with energy-based loss

𝐸𝑖𝑗 = D𝐾𝐿(𝒩𝑗| 𝒩𝑖 ℒ = σ 𝑖,𝑗,𝑗′ (𝐸𝑖𝑗
2 + exp

−𝐸
𝑖𝑗′)

Closer nodes should have lower energy

Naively: 𝑂(𝑁3) complexity 

Node-anchored sampling strategy:
• For each node same one another node from every neighborhood 

• Less than 4.2% triplets seen to match performance

• Lower gradient variance
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Graph2Gauss is parameter/data efficient
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Graph2Gauss captures uncertainty

Uncertainty correlates with diversity

Diversity: number of distinct classes

in a node’s k-hop neighborhood
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Graph2Gauss captures uncertainty

Uncertainty reveals the

intrinsic latent dimensionality of the graph

Detected latent dimensions

≈ number ground-truth communities 
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Uncertainty and link prediction

Prune dimensions with high uncertainty

Maintaining link prediction performance 
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Graph2Gauss is effective for visualization
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Neglected aspects of graph embeddings

Capturing uncertainty

Robustness to noise

Robustness to adversarial attacks 
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Why spectral embedding
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https://www.semanticscholar.org



What is spectral clustering

Graph clustering
• Maximize within-cluster edges

• Minimize between cluster edges
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The minimum cut

Partition V into two sets 𝐶1 and 𝐶2, such that the sum of the inter-cluster edge 
weights cut 𝐶1, 𝐶2 = σ𝑣1∈𝐶1,𝑣2∈𝐶2

𝑤(𝑣1, 𝑣2) is minimized

Drawbacks:
• Tends to cut small vertex sets from the rest of the graph

• Considers only inter-cluster edges, no intra-cluster edges
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The normalized cut

Ratio Cut: Minimize 
𝑐𝑢𝑡(𝐶1,𝐶2)

|𝐶1|
+

𝑐𝑢𝑡(𝐶2,𝐶1)

|𝐶2|

Normalized Cut: Minimize 
𝑐𝑢𝑡(𝐶1,𝐶2)

vol(𝐶1)
+

𝑐𝑢𝑡(𝐶1,𝐶2)

vol(𝐶2)
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Multi-way graph partitioning

Generalization to 𝑘 ≥ 2 clusters

Partition V into disjoint clusters 𝐶1, … , 𝐶𝑘 such that
• Cut: min

C1,…,Ck
σ𝑖=1
𝑘 𝑐𝑢𝑡(𝐶i, V\𝐶i)

• Ratio Cut: min
C1,…,Ck

σ𝑖=1
𝑘 𝑐𝑢𝑡(𝐶i,V\𝐶i)

|𝐶i|

• Normalized Cut: min
C1,…,Ck

σ𝑖=1
𝑘 𝑐𝑢𝑡(𝐶i,V\𝐶i)

vol(𝐶𝑖)

Finding the optimal solution is NP-hard

How to compute an approximate solution efficiently?
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Graph Laplacian

Laplacian matrix 𝐿 = 𝐷 − 𝐴
• 𝐴 = (weighted) adjacency matrix, 𝐷 = degree matrix

Observation: For any vector 𝑓 we have

𝑓𝑇 ⋅ 𝐿 ⋅ 𝑓 =
1

2
⋅ σ 𝑢,𝑣 ∈ 𝐸 𝑊𝑢𝑣 𝑓𝑢 − 𝑓𝑣

2

Normalized Laplacian 𝐿𝑠𝑦𝑚 = 𝐷−
1

2𝐿𝐷−
1

2 = 𝐼 − 𝐷−
1

2𝐴𝐷−
1

2
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Physical interpretation of the Laplacian (I)

Let f be a heat distribution over a graph with 𝑓𝑖 = the heat at node 𝑣𝑖

The heat transferred between 𝑣𝑖 and 𝑣𝑗 is prop. to (𝑓𝑖−𝑓𝑗) if 𝑖, 𝑗 ∈ 𝐸

27

https://en.wikipedia.org/wiki/Laplacian_matrix#/media/
File:Graph_Laplacian_Diffusion_Example.gif
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Physical interpretation of the Laplacian (I)

Graph is viewed as an electrical circuit with edges as wires (resistors)

Apply voltage at some nodes and measure induced voltage at other 
nodes

Induced voltages minimizes σ 𝑢,𝑣 ∈ 𝐸 𝑥𝑢 − 𝑥𝑣
2

We can find the voltage by minimizing 𝑥𝑇𝐿x
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Properties of the Graph Laplacian 

L is symmetric and positive semi-definite

The number of eigenvectors of 𝐿 with eigenvalue 0 corresponds to the 
number of connected components

Algebraic connectivity of a graph is 𝜆2(𝐿)
• The magnitude reflects how well connected the graph overall is

The spectrum of 𝐿 encodes useful information about the graph
• Unfortunately, there exist co-spectral graphs
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Minimum cut and the graph Laplacian

Define indicator vector: : ℎ𝐶𝑘 𝑖 = ቐ
1

|C𝑖|
𝑖𝑓 𝑣𝑖 ∈ 𝐶𝑘

0 𝑒𝑙𝑠𝑒

Let H = [ℎ𝐶1; ℎ𝐶2; … ; ℎ𝐶𝑘]

Observations:

𝐻𝑇𝐻 = 𝐼𝑑 is orthonormal 

ℎ𝐶𝑖
𝑇 ⋅ 𝐿 ⋅ ℎ𝑐𝑖 =

𝑐𝑢𝑡 𝐶𝑖,𝑉\𝐶𝑖

𝐶𝑖
and ℎ𝐶𝑖

𝑇 ⋅ 𝐿 ⋅ ℎ𝑐𝑖 = (𝐻𝑇𝐿𝐻)𝑖𝑖

𝑅𝑎𝑡𝑖𝑜𝐶𝑢𝑡(𝐶1, … , 𝐶𝑘) = σ𝑖=1
𝑘 𝑐𝑢𝑡 𝐶𝑖,𝑉\𝐶𝑖

𝐶𝑖
= σ𝑖=1

𝑘 (𝐻𝑇𝐿𝐻)𝑖𝑖 = 𝑡𝑟𝑎𝑐𝑒(𝐻𝑇𝐿𝐻)

NetGAN: Generating Graphs via Random Walks - Bojchevski, Shchur, Zügner, Günnemann. 30
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Minimum cut and the graph Laplacian

Minimizing ratio-cut (normalized cut with 𝐿𝑠𝑦𝑚) is equivalent to

min
𝐶1,…,𝐶𝑘

𝑡𝑟𝑎𝑐𝑒(𝐻𝑇𝐿𝐻) subject to 𝐻𝑇𝐻 = 𝐼𝑑

Constraint relaxation: allow arbitrary values for H

min
𝐻∈𝑅𝑉×𝐾

𝑡𝑟𝑎𝑐𝑒(𝐻𝑇𝐿𝐻) subject to 𝐻𝑇𝐻 = 𝐼𝑑

Standard trace minimization problem 

Optimal 𝐻 = First 𝐾 smallest eigenvectors of 𝐿
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Spectral embedding: random walk view

𝐿𝑟𝑤 = 𝐷−1𝐿 = 𝐼 − 𝐷−1𝐴 = 𝐼 − 𝑃 is the the random walk Laplacian
• 𝜆 is an eigenvalue of 𝐿𝑟𝑤 with eigenvector 𝑢 if and only if 𝜆 is an eigenvalue of 𝐿𝑠𝑦𝑚 with 

eigenvector 𝑤 = 𝐷1/2𝑢

Let 𝑃 𝐵 𝐴 = 𝑃 𝑋1 ∈ 𝐵 𝑋0 ∈ 𝐴 be the probability of a random walker currently 
at any node in 𝐴 to transition to any node in 𝐵, for 𝐴 ∩ 𝐵 = ∅ and A, 𝐵 ⊂ 𝑉. 
Sample 𝑋0 ∼ 𝜋 from the stationary distribution  𝑁𝑐𝑢𝑡(𝐴, ҧ𝐴) = 𝑃( ҧ𝐴|𝐴) + 𝑃(𝐴| ҧ𝐴)
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Spectral Embedding

Finding the spectral embedding = Solving an optimization task

𝐻∗ = k-first eigenvectors of 𝐿(𝐴)

33

𝐻∗ = arg min
𝐻∈ℝ𝑛×𝑑

𝑇𝑟𝑎𝑐𝑒 𝐻𝑇 ⋅ 𝐿(𝐴) ⋅ 𝐻

subject to 𝐻𝑇 ⋅ 𝐷𝐴 ⋅ 𝐻 = 𝐼𝑑

𝐿(𝐴) = 𝐷(𝐴) − 𝐴

Input
Graph 𝐴

Graph Laplacian
𝐿(𝐴)

Trace minimization
Ratio/Normalized Cut

Output
Embedding 𝐻∗
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Problem: sensitive to noisy data

Noisy

34

⇒ ⇒

⇒ ⇒

⇒

⇒

Spurious
edges

Distorted
embedding

Wrong
clustering

Clean

⇒ ⇒⇒Noisy
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Robustness via Latent Decomposition

Jointly learn decomposition & embedding

Decomposition steered by the underlying embedding / clustering

35

𝐴 = 𝐴𝑔 + 𝐴𝑐

𝐴𝑐𝐴𝑔

good graph sparse corruptions

+

𝐻∗ = arg min
𝐻∈ℝ𝑛×𝑑

𝑇𝑟𝑎𝑐𝑒 𝐻𝑇 ⋅ 𝐿(𝐴𝑔) ⋅ 𝐻

subject to 𝐻𝑇 ⋅ 𝐷(𝐴𝑔) ⋅ 𝐻 = 𝐼𝑑

𝐴∗, 𝐻∗ = arg min
𝐻∈ℝ𝑛×𝑑

𝐴𝑔∈ ℝ≥0 𝑛×𝑛

𝑇𝑟𝑎𝑐𝑒 𝐻𝑇 ⋅ 𝐿(𝐴𝑔) ⋅ 𝐻

subject to 𝐻𝑇 ⋅ 𝐷(𝐴𝑔) ⋅ 𝐻 = 𝐼𝑑
𝐴 = 𝐴𝑔 + 𝐴𝑐

𝐴𝑐 0 ≤ 2𝜃
∀𝑖: 𝑎𝑖

𝑐
0 ≤ 𝜔𝑖

global

local
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Solution: Alternating optimization

Update 𝐻, Given 𝐴𝑔/𝐴𝑐 → 𝐸𝑎𝑠𝑦
• Trace minimization problem

• Solution for 𝐻 are the 𝑘 first generalized eigenvectors of 𝐿(𝐴𝑔)

36

update 𝐴𝑔

update 𝐻

𝐴∗, 𝐻∗ = arg min
𝐻∈ℝ𝑛×𝑑

𝐴𝑔∈ ℝ≥0 𝑛×𝑛

𝑇𝑟𝑎𝑐𝑒 𝐻𝑇 ⋅ 𝐿(𝐴𝑔) ⋅ 𝐻
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Solution: Alternating optimization

Update 𝐴𝑔/𝐴𝑐 , Given 𝐻 → 𝑁𝑃 𝐻𝑎𝑟𝑑
• Express eigenvalues of 𝐴𝑛𝑒𝑤

𝑔
in closed form

• 𝐴𝑛𝑒𝑤
𝑔

that minimizes the trace equivalent to maximizing 𝑓

Robust Spectral Clustering 37Aleksandar Bojchevski

𝑓 𝑎𝑢𝑣
𝑐

𝑢,𝑣∈𝐸 = 

𝑢,𝑣∈𝐸

𝑎𝑢𝑣
𝑐 𝒉𝑢 − 𝒉𝑣 2

2

𝑛𝑜𝑑𝑒𝑠 𝑓𝑎𝑟 𝑎𝑤𝑎𝑦 𝑖𝑛
𝑡ℎ𝑒 𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔 𝑠𝑝𝑎𝑐𝑒

− 𝜆 ∘ 𝒉𝑢 2
− 𝜆 ∘ 𝒉𝑣 2

𝑝𝑟𝑒𝑓𝑒𝑟𝑠 𝑒𝑑𝑔𝑒𝑠 𝑐𝑙𝑜𝑠𝑒
𝑡𝑜 𝑡ℎ𝑒 𝑜𝑟𝑖𝑔𝑖𝑛

subject to ⋅ o constraints

𝐴∗, 𝐻∗ = arg min
𝐻∈ℝ𝑛×𝑑

𝐴𝑔∈ ℝ≥0 𝑛×𝑛

𝑇𝑟𝑎𝑐𝑒 𝐻𝑇 ⋅ 𝐿(𝐴𝑔) ⋅ 𝐻



Solution: Alternating optimization

Equivalent to Multidimensional Knapsack problem
• Greedy approximation

• Best possible approximation ratio of 1

𝑁+1

Efficient solution in O(#edges)
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Conclusion

Spectral embedding is sensitive to noisy data

Robustness via latent decomposition
ณ𝐴

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
𝑔𝑟𝑎𝑝ℎ

= ด𝐴𝑔

𝑔𝑜𝑜𝑑
𝑔𝑟𝑎𝑝ℎ

+ ด𝐴𝑐

𝑠𝑝𝑎𝑟𝑠𝑒
𝑐𝑜𝑟𝑟𝑢𝑝𝑡𝑖𝑜𝑛𝑠

Removed corrupted edges ⇒ increased discrimination
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Neglected aspects of graph embeddings

Capturing uncertainty

Robustness to noise

Robustness to adversarial attacks
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Adversarial attacks on graph embeddings 

(Spectral) Embeddings are not robust to noise / but we can remedy that

Are graph embeddings robust to adversarial attacks?

In domains where graph embeddings are used (e.g. the Web)

adversaries are common and false data is easy to inject
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Adversarial attacks in the image domain

Image of a tabby cat correctly classified

• Add imperceptible perturbation

• Model classifies the cat as guacamole

43

Training data

Training

Model

88% tabby cat
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Perturbation

Adversarial attacks in the image domain

Image of a tabby cat correctly classified

Add imperceptible perturbation

Model classifies the cat as guacamole

44

Training data

Training

Model

99% guacamole

Perturbed image
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The relational nature of the data might

Improve Robustness

embeddings are computed jointly

rather than in isolation

Cause Cascading Failures

perturbations in one part of the 
graph can propagate to the rest
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Attack possibilities

General attack

Goal: decrease the overall quality 
of the embeddings

Actions:
• Add/remove (flip) an edge

• Add/remove a node

• …

Targeted attack

Goal: attack a specific node or a 
specific downstream task 

Examples:
• Misclassify a target node 𝑡

• Increase/decrease the similarity of 
a set of node pairs 𝒯 ⊂ 𝑉 × 𝑉
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Attack model formally

መ𝐴∗ = arg max
𝐴∈ 0,1 𝑁×𝑁

ℒ( መ𝐴, 𝑍∗)

𝑍∗ = min
𝑍

ℒ( መ𝐴, 𝑍) 𝑠𝑢𝑏𝑗. 𝑡𝑜 መ𝐴 − 𝐴
0
= 2𝑓

Uncertainty and Robustness of Graph Embeddings - Bojchevski 47
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Optimal embedding from the
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The attacker’s budget



Attack model formally

መ𝐴∗ = arg max
𝐴∈ 0,1 𝑁×𝑁

ℒ( መ𝐴, 𝑍∗)

𝑍∗ = min
𝑍

ℒ( መ𝐴, 𝑍) 𝑠𝑢𝑏𝑗. 𝑡𝑜 መ𝐴 − 𝐴
0
= 2𝑓
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Attack model formally

መ𝐴∗ = arg max
𝐴∈ 0,1 𝑁×𝑁

ℒ𝑎𝑡𝑐𝑘( መ𝐴, 𝑍
∗)

𝑍∗ = min
𝑍

ℒ( መ𝐴, 𝑍) 𝑠𝑢𝑏𝑗. 𝑡𝑜 መ𝐴 − 𝐴
0
= 2𝑓
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Targeted attack



Challenges

Discrete and Combinatorial Bi-level optimization problem

Transductive learning ⇒ network poisoning setting
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Random-walk based embeddings

RW-based embeddings solve:

𝑍∗ = min
𝑍

ℒ( 𝑟1, 𝑟2, … , 𝑍) with 𝑟𝑖 = 𝑅𝑊𝑙(𝐴)

𝑍∗ ∈ ℝ𝑁×𝐾: learned embedding 

𝑅𝑊𝑙: e stochastic procedure that generates RWs of length 𝑙

ℒ: model-specific loss e.g. skip-gram with negative sampling (SGSN)

Challenge: RW sampling precludes gradient based optimization

Uncertainty and Robustness of Graph Embeddings - Bojchevski 51



Example: DeepWalk

DeepWalk is equivalent* to factorizing

෩𝑀 = logmax 𝑀, 1

𝑀 =
𝑣𝑜𝑙 𝐴

𝑇⋅𝑏
𝑆 𝑆 = σ𝑟=1

𝑇 𝑃𝑟 𝐷−1 𝑃 = 𝐷−1𝐴

with 𝑍∗ obtained by the SVD of ෩𝑀 = 𝑈Σ𝑉𝑇 using the top K largest singular 

values/vectors i.e. 𝑍∗ = 𝑈𝐾Σ𝐾
1/2

Uncertainty and Robustness of Graph Embeddings - Bojchevski 52

transition matrixwindow size 𝑇𝑏 negative samples
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Example: DeepWalk

Equivalent to min
෩𝑀𝐾

|| ෩𝑀 − ෩𝑀𝐾||𝐹
2

The loss using the optimal embedding is ℒ𝐷𝑊1
𝐴, 𝑍∗ = σ

𝑝=𝐾+1
|𝑉|

𝜎𝑝
2, where 

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎|𝑉| are the singular values of ෩𝑀(𝐴) ordered decreasingly

Idea: Given a perturbation Δ𝐴, find the change in the singular values of ෩𝑀(𝐴 + Δ𝐴)
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Example: DeepWalk

෩𝑀 = logmax 𝑀, 1 𝑀 =
𝑣𝑜𝑙 𝐴

𝑇⋅𝑏
𝑆 𝑆 = σ𝑟=1

𝑇 𝑃𝑟 𝐷−1

Linearization:  ignore the log(⋅) and max(⋅, 1)

Scalars 𝑣𝑜𝑙 𝐴 , 𝑇, 𝑏 can be also ignore

Rewrite ℒ𝐷𝑊1
𝐴, 𝑍∗ = σ

𝑝=𝐾+1
|𝑉|

|𝜆𝑝|
2

Thus, find a change in the spectrum of 𝑆 after the attacker perturbed the graph Δ𝐴
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Spectrum of S

Compute the generalized spectrum (generalized eigenvalues/vectors) of 𝐴

i.e. compute and 𝑈, Λ that solve 𝐴𝑢 = 𝜆𝐷𝑢

Rewrite 𝑆 = σ𝑟=1
𝑇 𝑃𝑟 𝐷−1 as 𝑆 = 𝑈 (σ𝑟=1

𝑇 Λ𝑟)𝑈𝑇

The task is now to find the change in generalized eigenvalues 𝜆𝑝 of the adjacency 
matrix 𝐴 given a perturbation Δ𝐴
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Eigenvalue perturbation theory

Given 𝑈, Λ that solve 𝐴𝑢 = 𝜆𝐷𝑢′ and a small perturbation Δ𝐴, Δ𝐷

Find 𝑈′, Λ′ that solve 𝐴 + Δ𝐴 𝑢′ = 𝜆′(𝐷 + Δ𝐷)𝑢′

First order approximation:
𝜆′𝑝 = 𝜆𝑝 + 𝑢𝑝

𝑇 Δ𝐴 + 𝜆𝑝Δ𝐷 𝑢𝑝

for small Δ𝐴 and ΔD higher order terms become negligible
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For a single edge flip

Δ𝐴 is a matrix with only 2 non-zero elements for a single edge flip (𝑖, 𝑗)

namely Δ𝐴𝑖𝑗 = Δ𝐴𝑗𝑖 = 1 − 2A𝑖𝑗 ≔ Δw𝑖𝑗

Similarly, ΔD has only two non-zero elements on the diagonal 

Then we can approximate the generalized eigenvalues of A + Δ𝐴 in closed-form

computable in O(1) time:

𝜆′𝑝 = 𝜆𝑝 + Δw𝑖𝑗 2𝑢𝑝𝑖 ⋅ 𝑢𝑝𝑗 − 𝜆𝑝(𝑢𝑝𝑖
2 + 𝑢𝑝𝑗

2 )
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Connecting it all together

1. DeepWalk is equivalent to a SVD of ෩𝑀 = logmax
𝑣𝑜𝑙 𝐴

𝑇⋅𝑏
𝑆, 1

2. The loss can be computed from the singular values / the spectrum of S

3. The spectrum of 𝑆 can be easily computed from the generalized spectrum of A

4. For any given edge flip (𝑖, 𝑗) we can compute in O(1) the spectrum of 𝐴 + Δ𝐴
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Overall algorithm

However, 
መ𝐴∗ = arg max

𝐴∈ 0,1 𝑁×𝑁
ℒ𝑐𝑙𝑜𝑠𝑒𝑑−𝑓𝑜𝑟𝑚 𝑠𝑢𝑏𝑗. 𝑡𝑜 መ𝐴 − 𝐴

0
= 2𝑓

is still hard to optimize –
𝑁2

𝑓
ways to choose the flips 

Greedy solution:

1. For each edge (𝑖, 𝑗) calculate its impact on the loss if flipped

2. Pick the top f edges
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General attack (node classification proxy)
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Targeted attack

To target node 𝑣 we need the change in its embedding 𝑍𝑣
∗

That is we need the change in eigenvectors 

Apply eigenvalue perturbation again to approximate the top 𝐾 eigenvectors 

For a given edge flip (𝑖, 𝑗) we get:

𝑢𝑝
′ = 𝑢𝑝 − Δw𝑖𝑗 𝐴 − 𝜆𝐷 + −Δ𝜆𝑝𝑢𝑝 ∘ 𝑑 + 𝐸𝑖 𝑢𝑝𝑗 − 𝜆𝑝𝑢𝑝𝑖 + 𝐸𝑗 𝑢𝑝𝑖 − 𝜆𝑝𝑢𝑝𝑗
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Targeted attack: Link prediction
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Targeted attack: Node classification
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Analysis of adversarial edges
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Transferability

DW (SVD) DW (SGNS) n2v Spect. Embd. Label Prop. GCN 

𝑓 = 250 (0.8%) -3.59 -2.37 -2.04 -2.11 -5.78 -3.34

𝑓 = 500 (1.6%) -4.62 -3.97 -3.48 -4.57 -8.95 -2.33

𝑓 = 250 (1.7%) -7.59 -5.73 -6.45 -3.58 -4.99 -2.21

𝑓 = 500 (3.4%) -9.68 -11.47 -10.24 -4.57 -6.27 -8.61
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Conclusion

Node embeddings are vulnerable to adversarial attacks 

Poisoning has negative effect on the embeddings quality and the downstream tasks

Attacks are transferable – they generalize to many models
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Important aspects of graph embeddings

Capturing uncertainty

Robustness to noise

Robustness to adversarial attacks 
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