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Robustness to noise
Robustness to adversarial attacks



5 Neglected aspects of graph embeddings

Robustness to noise
Robustness to adversarial attacks

Uncertainty and Robustness of Graph Embeddings - Bojchevski



. » Nodes are points in a low-dimensional space

EZ>
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. » Nodes are distributions

2>
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}5{ Graph2Gauss - 3 key modeling ideas

1. Uncertainty 2. Personalized ranking 3. Inductiveness
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encoder
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A

Uncertainty

EZ>

Embed nodes as (Gaussian) distributions

Sources of uncertainty:
* Conflicting structure and attributes
* Heterogenous neighborhood

* Noise, outliers, anomalies, ....

Uncertainty and Robustness of Graph Embeddings - Bojchevski



. » Personalized ranking

EZ>

For each node i: nodes in its (k)-hop neighborhood
should be closer to i compared to nodes
in its (k + 1)-hop neighborhood
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. » Personalized ranking

EZ>

For each node i: nodes in its (k)-hop neighborhood

should be - to i compared to nodes
in its (k + 1)-hop neighborhood
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. » Personalized ranking

2
For each node i: nodes in its (k)-hop neighborhood
should be - to i compared to nodes
inits (k + 1)-hop neighborhood

Example: closer in terms of the KL Diveregence

KL is asymmetric = handles directed graphs
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A

Personalized ranking

EZ>

Personalized ranking implies

pairwise constraints for node i

Dk (Wj||NV;) < Dgp, ,(Nj'”]VD
vj e N9,vj’ e N vk < K

|

set of nodes in the k-hop neighborhood of node i
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. » Inductiveness

EZ>

Generalize to - nodes by learning
a mapping from features to embeddings
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}5{ Graph2Gauss - 3 key modeling ideas

1. Uncertainty 2. Personalized ranking 3. Inductiveness

Xﬁllll‘}lll
f9 (xl) deep

encoder

N (g, 2y)

Uncertainty and Robustness of Graph Embeddings - Bojchevski 13 Tlm



. » Learning with energy-based loss

2
—E. ./
Eij = D (W[IV;) L = Z(i,j,j')(EiZj +exp V)

Closer nodes should have lower energy

Naively: O(N3) complexity

Node-anchored sampling strategy:

* For each node same one another node from every neighborhood
* Less than 4.2% triplets seen to match performance
* Lower gradient variance



Graph2Gauss is parameter/data efficient
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. » Graph2Gauss captures uncertainty

EZ>

Uncertainty correlates with diversity

Diversity: number of distinct classes

in a node’s k-hop neighborhood
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. » Graph2Gauss captures uncertainty

EZ>

Uncertainty reveals the
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. » Uncertainty and link prediction

EZ>

0.96 | mme——— i e
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Prune dimensions with high uncertainty g 0.92 1
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. » Graph2Gauss is effective for visualization
o
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5 Neglected aspects of graph embeddings

Capturing uncertainty

Robustness to adversarial attacks
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5 Why spectral embedding

1937 2019

https://www.semanticscholar.org
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. » What is spectral clustering

EZ>

D=5 4

o ®

OECDOE ®o

OEOCOMN 1

> W ECO Similarity Spectr§I 0

I Graph Embedding 4 5 3

< OgoOoond !
EECOCOE -

EECOCN -3

[@OE@E0] -:

Graph clustering
* Maximize within-cluster edges
* Minimize between cluster edges
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« o 1he minimum cut

EZ>

Partition V into two sets C; and C,, such that the sum of the inter-cluster edge

weights cut(Cy, C2) = Xy, ec, v,ec, W(V1, V2) is minimized

D

2

1

Drawbacks:

0<4\O/2

/O\
@

* Tends to cut small vertex sets from the rest of the graph
* Considers only inter-cluster edges, no intra-cluster edges
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. » 1he normalized cut

Cut(Cl,Cz) + CUt(Cz,Cl)
|C4] 1C2|

Ratio Cut: Minimize

cut(C,,C,) , cut(Cq1,Cy)

Normalized Cut: Minimize vol(C) vol(Cy)
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. » Multi-way graph partitioning

2>

Generalization to k = 2 clusters

Partition V into disjoint clusters Cj, ..., Cj, such that

. : : k . :
Cut: Cllrnlr(ljk Y1 cut(C;, V\G) I/CP 4 2
. : t(C;,V\C;j 2 4
* Ratio Cut: min YF . cut(G,G) 3 3
Cq,...Cx |Cil ya
. . Cmin Sk CUECVAC) 4\833/ CI)/Z
Normalized Cut: c{?.l.,%kzlzl vol(C) > (A

Minimum Cut for k = 3

Finding the optimal solution is NP-hard

How to compute an approximate solution efficiently?
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Graph Laplacian
"

Laplacian matrix L=D — A
» A = (weighted) adjacency matrix, D = degree matrix

Observation: For any vector f we have
1
fT L-f = 5 Z(u,v)EE Wuv(fu _ fv)z

1 1 1

1
Normalized Laplacian Lgy,,, = D 2LD 2= 1—D 24D >



Physical interpretation of the Laplacian (|
s PNy p p (1)

Let f be a heat distribution over a graph with f; = the heat at node v;
The heat transferred between v; and v; is prop. to (f;—f;) if (i,j) € E

Diffusion t = 0.000000

https://en.wikipedia.org/wiki/Laplacian_matrix#/media/
File:Graph_Laplacian_Diffusion_Example.gif



Physical interpretation of the Laplacian (|
s PNy p p (1)

Graph is viewed as an electrical circuit with edges as wires (resistors)

Apply voltage at some nodes and measure induced voltage at other

nodes
W\1V
0.5V,
W
inimi — X, 0.5V
Induced voltages minimizes Y., ,)e g (X, — X, ",
W

We can find the voltage by minimizing xTLx ov—= 937V 0.625V
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Properties of the Graph Laplacian
9 P P P

L is symmetric and positive semi-definite

The number of eigenvectors of L with eigenvalue O corresponds to the
number of connected components

Algebraic connectivity of a graph is A, (L)
* The magnitude reflects how well connected the graph overall is

The spectrum of L encodes useful information about the graph
* Unfortunately, there exist co-spectral graphs



~» Minimum cut and the graph Laplacian

2
: | 4
if v; € Cy z"/CF
2

4 2
Define indicator vector: : h¢, [i] = JICi //P\“
0 else ’<4 P 3 z>®
Let H = [hcl; hcz; cee ) th] \é/ 2— é/

Observations:
HTH = Id is orthonormal

RL - L-he, = C“t(lcci'i‘l’\ci) and AL - L-he = (HTLH)y

RatioCut(Cy, ..., Cy) = {'{=1 Cut(lcci’-‘ll\Ci) = {":1(HTLH)1-1- = trace(HTLH)
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~» Minimum cut and the graph Laplacian

Minimizing ratio-cut (normalized cut with Lg,,,,) is equivalent to

_min trace(HTLH) subjectto H'H = Id
1otk

Constraint relaxation: allow arbitrary values for H

min_trace(HTLH) subjectto H'H = Id
HeRVXK

Standard trace minimization problem
Optimal H = First K smallest eigenvectors of L



A

Spectral embedding: random walk view

EZ>

L., =D"1L=1—D"1A =1— Pisthe the random walk Laplacian
* Aisan eigenvalue of L,.,, with eigenvector u if and only if A is an eigenvalue of Lg,,, with
eigenvectorw = D1/2y

Let P(B|A) = P(X; € B|X, € A) be the probability of a random walker currently
at any node in A to transition to any node in B,forANB =@ andA,B c V. ~
Sample X, ~  from the stationary distribution Ncut(4,A) = P(A|A) + P(A|A)



.0 opectral Embedding

2>

L(A)=D(A) — A H* = arg r%{ind Trace(H - L(A) - H)
He nx
subjectto H' - D, - H = Id

Input Graph Laplacian Trace minimization
Graph A L(A) Ratio/Normalized Cut

Finding the spectral embedding = Solving an optimization task
H* = k-first eigenvectors of L(A)

Uncertainty and Robustness of Graph Embeddings - Bojchevski
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. » Problem: sensitive to noisy data
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. » Robustness via Latent Decomposition

H* = arg min Trace(HT - L(AY9) - H)
_____________ HeRnxd
subjectto HT - D(4A9) -H = Id

A" H*=arg min_  Trace(H" - L(A9) - H)

AY ) HeRnxd
O e AIE(Rzo)™<"
% + oy WY subjectto HT - D(AY9) -H = Id
N A=A9 + A€

1A%l <26 global
Vi llaflly < w; local

good graph sparse corruptions

Jointly learn decomposition & embedding
Decomposition steered by the underlying embedding / clustering
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. » Solution: Alternating optimization

A" H* =arg min_ Trace(H" - L(A9) - H)
HeRnXd
ATE(Ryo)™M

‘ update H ~
‘ update Ag’

Update H, Given A9 /A¢ — Easy
* Trace minimization problem
* Solution for H are the k first generalized eigenvectors of L(A9Y)
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. » Solution: Alternating optimization

A*H*=arg min_ Trace(HT - L(A9)-H)
HeRnXd
AJE(Ro)™ ™

U, vEE nodes far away in prefers edges close
the embedding space to the origin

f(laflupes) = ) aﬁv< Ihy = holl3 = [Vl - VA= Ryl

subject to ||:||, constraints

Update A9 /A€, Given H —» (NP) Hard

* Express eigenvalues of A7, in closed form

e AY

new that minimizes the trace equivalent to maximizing f

AleksandaRd8ojsh&pskitral Clustering
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. » Solution: Alternating optimization

Equivalent to Multidimensional Knapsack problem

* Greedy approximation

. . . . . 1
Best possible approximation ratio of —
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. » Conclusion

2
Spectral embedding is sensitive to noisy data

Robustness via latent decomposition

A = A9 + A
B \—~~r —~
original good sparse
graph graph  corruptions

Removed corrupted edges = increased discrimination
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5 Neglected aspects of graph embeddings

Capturing uncertainty
Robustness to noise
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. » Adversarial attacks on graph embeddings

EZ>

(Spectral) Embeddings are not robust to noise / but we can remedy that

Are graph embeddings robust to adversarial attacks?

In domains where graph embeddings are used (e.g. the Web)

adversaries are common and false data is easy to inject



. » Adversarial attacks in the image domain

EZ>

Training data Model

Image of a tabby cat correctly classified » 88% tabby cat
Trammg
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. » Adversarial attacks in the image domain

Training data Model

f R,
Image of a tabby cat correctly classified B H % 595 suacamole
B g ) Training

Add imperceptible perturbation

@

Model classifies the cat as guacamole

Perturbed image

Perturbation
Uncertainty and Robustness of Graph Embeddings - Bojchevski 44 Tlm



. » 1he relational nature of the data might

EZ>

Improve Robustness Cause Cascading Failures

embeddings are computed jointly | perturbations in one part of the
rather than in isolation graph can propagate to the rest




A

Attack possibilities

EZ>

General attack

Goal: decrease the overall quality
of the embeddings

Actions:

* Add/remove (flip) an edge
 Add/remove a node

Targeted attack

Goal: attack a specific node or a
specific downstream task

Examples:

* Misclassify a target node ¢t

* Increase/decrease the similarity of
asetof nodepairsT cV XV



. » Attack model formally

EZ>

Adjacency matrix of the graph after
the attacker modified some entries

t

A* = ar ma L(A Z*
g/TE{O,l})I%XN ( )

AR mZinL(/T,Z) subj.to H/T —AHO = 2f
| |

Optimal embedding from the The attacker’s budget

to be optimized graph A



. » Attack model formally

EZ>

Adjacency matrix of the graph after
the attacker modified some entries

t
A* =arg max B(AZ

AE{O,l}NXN -

_ General attack

AR mZin/;(;T,Z) subj.to H/T —AHO = 2f
| |

Optimal embedding from the The attacker’s budget

to be optimized graph A



. » Attack model formally

EZ>

Adjacency matrix of the graph after
the attacker modified some entries

t

A* = Barer (A, Z*
arg L max atek (4, Z”)

— Targeted attack

AR mZin/;(;T,Z) subj.to H/T —AHO = 2f
| |

Optimal embedding from the The attacker’s budget

to be optimized graph A



. » Challenges
2>

Discrete and Combinatorial Bi-level optimization problem

Transductive learning = network poisoning setting

Evasion Poisoning
frozen model embedding model
~ ®
B H train \/ 3 train O | train
1 1
target H target
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A

Random-walk based embeddings

EZ>

RW-based embeddings solve:

7" = mZin L{r, 1, ...}, Z) withr; = RW;(A)
Z* € RN*K: learned embedding
RW,: e stochastic procedure that generates RWs of length [

L: model-specific loss e.g. skip-gram with negative sampling (SGSN)

Challenge: RW sampling precludes gradient based optimization



. » Example: DeepWalk
2>

DeepWalk is equivalent™ to factorizing

~ Shifted Positive Pointwise
M = log maX(M' 1) Mutual Information (PPMI) Matrix

__ vol(4) — (yT  pryp-1 —p-1
M=""2S8 S=QI_,P")D P=D14
b negative samples window size T transition matrix

with Z* obtained by the SVD of M = UXVT using the top K largest singular
: . 1/2
values/vectorsi.e. Z* = UgXy



. » Example: DeepWalk
oL@

Equivalent to min ||M — M||?
Mk

The loss using the optimal embedding is Lpy, (4,Z7) = \/ZLVJKH ag, where

g; = 0y = -+ 2 0)y| are the singular values of M (A) ordered decreasingly

Idea: Given a perturbation AA, find the change in the singular values of 1\71(/1 + AA)



. » Example: DeepWalk
oL@

M = logmax(M, 1) M = voTl.(bA)S S=0CQI_,P")D1

Linearization: ignore the log(-) and max(-, 1)

Scalars vol(A4),T, b can be also ignore

Rewrite Lpy, (4,Z27) = \/ZL‘;'KH 14,

Thus, find a change in the spectrum of S after the attacker perturbed the graph AA



o Spectrum of S

25
Compute the generalized spectrum (generalized eigenvalues/vectors) of A

i.e. compute and U, A that solve Au = ADu

Rewrite S = QI_,P")D tasS =U QI_,ANHUT
t

simple function of the generalized eigenvalues A; of the graph

The task is now to find the change in generalized eigenvalues 4,, of the adjacency
matrix A given a perturbation AA



A

Eigenvalue perturbation theory

EZ>

Given U, A that solve Au = ADu' and a small perturbation AA, AD
Find U’, A" that solve (A + AA)u' = A'(D + AD)u’
First order approximation:

Ay =2, +ub(AA + A,AD)u,

for small AA and AD higher order terms become negligible



. » FOr asingle edge flip
S

AA is a matrix with only 2 non-zero elements for a single edge flip (i, )
namely Ad;; = Ad;; = 1 — 2A;5 == Awy;

Similarly, AD has only two non-zero elements on the diagonal

Then we can approximate the generalized eigenvalues of A + AA in closed-form

computable in O(1) time:

A’p = Ap + Awij(Zupi y upj — Ap (uzz,i + UIZQJ))



. » Connecting it all together

25
vol(A)
T-b

1. DeepWalk is equivalent to a SVD of M = log max ( S, 1)

2. The loss can be computed from the singular values / the spectrum of S
3. The spectrum of S can be easily computed from the generalized spectrum of A

4. For any given edge flip (i,j) we can compute in O(1) the spectrum of A + AA



. » Overall algorithm

2
However,

A* = argﬁe{rg}%%m Lciosed—form Subj.to ||A — A||O = 2f
2

is still hard to optimize — ( ) ways to choose the flips

f

Greedy solution:
1. For each edge (i,j) calculate its impact on the loss if flipped
2. Pick the top f edges



. » General attack (node classification proxy)

EZ>

‘ ADW2 ' ADW3 ' Aabr Brnd Bdeg Be."g

NN WS NN NS W AN F S N B UL NN NN R J NN W SN SN S S S S S S S S
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o o
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. » largeted attack
2>

To target node v we need the change in its embedding Z,

That is we need the change in eigenvectors
Apply eigenvalue perturbation again to approximate the top K eigenvectors
For a given edge flip (i, ) we get:

uz’, — U,p — AWU(A — AD)-I_ (—A/lpup od + Ei(upj — Apupi) + Ej(upi — Apupj))



;'If Targeted attack: Link prediction

4 Aow, > Apw, YV Aapr Brnd Bdeg Beig
AT
0.82 1 == 5 = = = = o S Ny == — s i
o %897 \\’\;.., )
S S
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. » largeted attack: Node classification

EZ>
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. » Analysis of adversarial edges

EZ>

o
Ll
]

KDE density
=

=
-
1

—— adversarial
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0.01 0.02 0.03
edge centrality
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. » Iransferability

2>

DW (SVD) DW (SGNS) n2v Spect. Embd. Label Prop. GCN
f =250 (0.8%) -3.59 -2.37 -2.04 -2.11 -5.78 -3.34
f =500 (1.6%) -4.62 -3.97 -3.48 -4.57 -8.95 -2.33
f =250 (1.7%) -7.59 -5.73 -6.45 -3.58 -4.99 -2.21
f =500 (3.4%) -9.68 -11.47 -10.24 -4.57 -6.27 -8.61

Uncertainty and Robustness of Graph Embeddings -

Bojchevski



. » Conclusion

EZ>

Node embeddings are vulnerable to adversarial attacks
Poisoning has negative effect on the embeddings quality and the downstream tasks

Attacks are transferable — they generalize to many models



. » Important aspects of graph embeddings

EZ>

Capturing uncertainty
Robustness to noise
Robustness to adversarial attacks



